Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones8.1 |
|
2 |
|
sticksstones8.2 |
|
3 |
|
sticksstones8.3 |
|
4 |
|
sticksstones8.4 |
|
5 |
|
sticksstones8.5 |
|
6 |
|
eqidd |
|
7 |
|
simpr |
|
8 |
7
|
oveq2d |
|
9 |
8
|
sumeq1d |
|
10 |
7 9
|
oveq12d |
|
11 |
|
simp3 |
|
12 |
|
ovexd |
|
13 |
6 10 11 12
|
fvmptd |
|
14 |
1
|
3ad2ant1 |
|
15 |
2
|
3ad2ant1 |
|
16 |
|
simpr |
|
17 |
4
|
a1i |
|
18 |
17
|
eqcomd |
|
19 |
16 18
|
eleqtrrd |
|
20 |
|
feq1 |
|
21 |
|
simpl |
|
22 |
21
|
fveq1d |
|
23 |
22
|
sumeq2dv |
|
24 |
23
|
eqeq1d |
|
25 |
20 24
|
anbi12d |
|
26 |
25
|
elabg |
|
27 |
16 26
|
syl |
|
28 |
27
|
biimpd |
|
29 |
19 28
|
mpd |
|
30 |
29
|
simpld |
|
31 |
30
|
3adant3 |
|
32 |
|
eqid |
|
33 |
|
fveq2 |
|
34 |
|
nfcv |
|
35 |
|
nfcv |
|
36 |
|
nfcv |
|
37 |
|
nfcv |
|
38 |
33 34 35 36 37
|
cbvsum |
|
39 |
29
|
simprd |
|
40 |
38 39
|
eqtr3id |
|
41 |
40
|
3adant3 |
|
42 |
14 15 31 11 32 41
|
sticksstones7 |
|
43 |
13 42
|
eqeltrrd |
|
44 |
43
|
3expa |
|
45 |
|
eqid |
|
46 |
44 45
|
fmptd |
|
47 |
1
|
ad3antrrr |
|
48 |
47
|
adantr |
|
49 |
2
|
ad3antrrr |
|
50 |
49
|
adantr |
|
51 |
26
|
adantl |
|
52 |
51
|
biimpd |
|
53 |
19 52
|
mpd |
|
54 |
53
|
simpld |
|
55 |
54
|
adantr |
|
56 |
55
|
adantr |
|
57 |
56
|
adantr |
|
58 |
|
simpllr |
|
59 |
|
simplr |
|
60 |
|
simpr |
|
61 |
48 50 57 58 59 60 45
|
sticksstones6 |
|
62 |
61
|
ex |
|
63 |
62
|
ralrimiva |
|
64 |
63
|
ralrimiva |
|
65 |
46 64
|
jca |
|
66 |
|
fzfid |
|
67 |
46 66
|
fexd |
|
68 |
|
feq1 |
|
69 |
|
fveq1 |
|
70 |
|
fveq1 |
|
71 |
69 70
|
breq12d |
|
72 |
71
|
imbi2d |
|
73 |
72
|
2ralbidv |
|
74 |
68 73
|
anbi12d |
|
75 |
74
|
elabg |
|
76 |
67 75
|
syl |
|
77 |
65 76
|
mpbird |
|
78 |
5
|
a1i |
|
79 |
77 78
|
eleqtrrd |
|
80 |
79 3
|
fmptd |
|