| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones8.1 |
|
| 2 |
|
sticksstones8.2 |
|
| 3 |
|
sticksstones8.3 |
|
| 4 |
|
sticksstones8.4 |
|
| 5 |
|
sticksstones8.5 |
|
| 6 |
|
eqidd |
|
| 7 |
|
simpr |
|
| 8 |
7
|
oveq2d |
|
| 9 |
8
|
sumeq1d |
|
| 10 |
7 9
|
oveq12d |
|
| 11 |
|
simp3 |
|
| 12 |
|
ovexd |
|
| 13 |
6 10 11 12
|
fvmptd |
|
| 14 |
1
|
3ad2ant1 |
|
| 15 |
2
|
3ad2ant1 |
|
| 16 |
|
simpr |
|
| 17 |
4
|
a1i |
|
| 18 |
17
|
eqcomd |
|
| 19 |
16 18
|
eleqtrrd |
|
| 20 |
|
feq1 |
|
| 21 |
|
simpl |
|
| 22 |
21
|
fveq1d |
|
| 23 |
22
|
sumeq2dv |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
20 24
|
anbi12d |
|
| 26 |
25
|
elabg |
|
| 27 |
16 26
|
syl |
|
| 28 |
27
|
biimpd |
|
| 29 |
19 28
|
mpd |
|
| 30 |
29
|
simpld |
|
| 31 |
30
|
3adant3 |
|
| 32 |
|
eqid |
|
| 33 |
|
fveq2 |
|
| 34 |
|
nfcv |
|
| 35 |
|
nfcv |
|
| 36 |
33 34 35
|
cbvsum |
|
| 37 |
29
|
simprd |
|
| 38 |
36 37
|
eqtr3id |
|
| 39 |
38
|
3adant3 |
|
| 40 |
14 15 31 11 32 39
|
sticksstones7 |
|
| 41 |
13 40
|
eqeltrrd |
|
| 42 |
41
|
3expa |
|
| 43 |
|
eqid |
|
| 44 |
42 43
|
fmptd |
|
| 45 |
1
|
ad3antrrr |
|
| 46 |
45
|
adantr |
|
| 47 |
2
|
ad3antrrr |
|
| 48 |
47
|
adantr |
|
| 49 |
26
|
adantl |
|
| 50 |
49
|
biimpd |
|
| 51 |
19 50
|
mpd |
|
| 52 |
51
|
simpld |
|
| 53 |
52
|
adantr |
|
| 54 |
53
|
adantr |
|
| 55 |
54
|
adantr |
|
| 56 |
|
simpllr |
|
| 57 |
|
simplr |
|
| 58 |
|
simpr |
|
| 59 |
46 48 55 56 57 58 43
|
sticksstones6 |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
ralrimiva |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
44 62
|
jca |
|
| 64 |
|
fzfid |
|
| 65 |
44 64
|
fexd |
|
| 66 |
|
feq1 |
|
| 67 |
|
fveq1 |
|
| 68 |
|
fveq1 |
|
| 69 |
67 68
|
breq12d |
|
| 70 |
69
|
imbi2d |
|
| 71 |
70
|
2ralbidv |
|
| 72 |
66 71
|
anbi12d |
|
| 73 |
72
|
elabg |
|
| 74 |
65 73
|
syl |
|
| 75 |
63 74
|
mpbird |
|
| 76 |
5
|
a1i |
|
| 77 |
75 76
|
eleqtrrd |
|
| 78 |
77 3
|
fmptd |
|