Metamath Proof Explorer


Theorem sticksstones8

Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024)

Ref Expression
Hypotheses sticksstones8.1 φ N 0
sticksstones8.2 φ K 0
sticksstones8.3 F = a A j 1 K j + l = 1 j a l
sticksstones8.4 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
sticksstones8.5 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
Assertion sticksstones8 φ F : A B

Proof

Step Hyp Ref Expression
1 sticksstones8.1 φ N 0
2 sticksstones8.2 φ K 0
3 sticksstones8.3 F = a A j 1 K j + l = 1 j a l
4 sticksstones8.4 A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
5 sticksstones8.5 B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
6 eqidd φ a A j 1 K e 1 K e + l = 1 e a l = e 1 K e + l = 1 e a l
7 simpr φ a A j 1 K e = j e = j
8 7 oveq2d φ a A j 1 K e = j 1 e = 1 j
9 8 sumeq1d φ a A j 1 K e = j l = 1 e a l = l = 1 j a l
10 7 9 oveq12d φ a A j 1 K e = j e + l = 1 e a l = j + l = 1 j a l
11 simp3 φ a A j 1 K j 1 K
12 ovexd φ a A j 1 K j + l = 1 j a l V
13 6 10 11 12 fvmptd φ a A j 1 K e 1 K e + l = 1 e a l j = j + l = 1 j a l
14 1 3ad2ant1 φ a A j 1 K N 0
15 2 3ad2ant1 φ a A j 1 K K 0
16 simpr φ a A a A
17 4 a1i φ a A A = g | g : 1 K + 1 0 i = 1 K + 1 g i = N
18 17 eqcomd φ a A g | g : 1 K + 1 0 i = 1 K + 1 g i = N = A
19 16 18 eleqtrrd φ a A a g | g : 1 K + 1 0 i = 1 K + 1 g i = N
20 feq1 g = a g : 1 K + 1 0 a : 1 K + 1 0
21 simpl g = a i 1 K + 1 g = a
22 21 fveq1d g = a i 1 K + 1 g i = a i
23 22 sumeq2dv g = a i = 1 K + 1 g i = i = 1 K + 1 a i
24 23 eqeq1d g = a i = 1 K + 1 g i = N i = 1 K + 1 a i = N
25 20 24 anbi12d g = a g : 1 K + 1 0 i = 1 K + 1 g i = N a : 1 K + 1 0 i = 1 K + 1 a i = N
26 25 elabg a A a g | g : 1 K + 1 0 i = 1 K + 1 g i = N a : 1 K + 1 0 i = 1 K + 1 a i = N
27 16 26 syl φ a A a g | g : 1 K + 1 0 i = 1 K + 1 g i = N a : 1 K + 1 0 i = 1 K + 1 a i = N
28 27 biimpd φ a A a g | g : 1 K + 1 0 i = 1 K + 1 g i = N a : 1 K + 1 0 i = 1 K + 1 a i = N
29 19 28 mpd φ a A a : 1 K + 1 0 i = 1 K + 1 a i = N
30 29 simpld φ a A a : 1 K + 1 0
31 30 3adant3 φ a A j 1 K a : 1 K + 1 0
32 eqid e 1 K e + l = 1 e a l = e 1 K e + l = 1 e a l
33 fveq2 i = l a i = a l
34 nfcv _ l a i
35 nfcv _ i a l
36 33 34 35 cbvsum i = 1 K + 1 a i = l = 1 K + 1 a l
37 29 simprd φ a A i = 1 K + 1 a i = N
38 36 37 eqtr3id φ a A l = 1 K + 1 a l = N
39 38 3adant3 φ a A j 1 K l = 1 K + 1 a l = N
40 14 15 31 11 32 39 sticksstones7 φ a A j 1 K e 1 K e + l = 1 e a l j 1 N + K
41 13 40 eqeltrrd φ a A j 1 K j + l = 1 j a l 1 N + K
42 41 3expa φ a A j 1 K j + l = 1 j a l 1 N + K
43 eqid j 1 K j + l = 1 j a l = j 1 K j + l = 1 j a l
44 42 43 fmptd φ a A j 1 K j + l = 1 j a l : 1 K 1 N + K
45 1 ad3antrrr φ a A x 1 K y 1 K N 0
46 45 adantr φ a A x 1 K y 1 K x < y N 0
47 2 ad3antrrr φ a A x 1 K y 1 K K 0
48 47 adantr φ a A x 1 K y 1 K x < y K 0
49 26 adantl φ a A a g | g : 1 K + 1 0 i = 1 K + 1 g i = N a : 1 K + 1 0 i = 1 K + 1 a i = N
50 49 biimpd φ a A a g | g : 1 K + 1 0 i = 1 K + 1 g i = N a : 1 K + 1 0 i = 1 K + 1 a i = N
51 19 50 mpd φ a A a : 1 K + 1 0 i = 1 K + 1 a i = N
52 51 simpld φ a A a : 1 K + 1 0
53 52 adantr φ a A x 1 K a : 1 K + 1 0
54 53 adantr φ a A x 1 K y 1 K a : 1 K + 1 0
55 54 adantr φ a A x 1 K y 1 K x < y a : 1 K + 1 0
56 simpllr φ a A x 1 K y 1 K x < y x 1 K
57 simplr φ a A x 1 K y 1 K x < y y 1 K
58 simpr φ a A x 1 K y 1 K x < y x < y
59 46 48 55 56 57 58 43 sticksstones6 φ a A x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
60 59 ex φ a A x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
61 60 ralrimiva φ a A x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
62 61 ralrimiva φ a A x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
63 44 62 jca φ a A j 1 K j + l = 1 j a l : 1 K 1 N + K x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
64 fzfid φ a A 1 K Fin
65 44 64 fexd φ a A j 1 K j + l = 1 j a l V
66 feq1 f = j 1 K j + l = 1 j a l f : 1 K 1 N + K j 1 K j + l = 1 j a l : 1 K 1 N + K
67 fveq1 f = j 1 K j + l = 1 j a l f x = j 1 K j + l = 1 j a l x
68 fveq1 f = j 1 K j + l = 1 j a l f y = j 1 K j + l = 1 j a l y
69 67 68 breq12d f = j 1 K j + l = 1 j a l f x < f y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
70 69 imbi2d f = j 1 K j + l = 1 j a l x < y f x < f y x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
71 70 2ralbidv f = j 1 K j + l = 1 j a l x 1 K y 1 K x < y f x < f y x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
72 66 71 anbi12d f = j 1 K j + l = 1 j a l f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y j 1 K j + l = 1 j a l : 1 K 1 N + K x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
73 72 elabg j 1 K j + l = 1 j a l V j 1 K j + l = 1 j a l f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y j 1 K j + l = 1 j a l : 1 K 1 N + K x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
74 65 73 syl φ a A j 1 K j + l = 1 j a l f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y j 1 K j + l = 1 j a l : 1 K 1 N + K x 1 K y 1 K x < y j 1 K j + l = 1 j a l x < j 1 K j + l = 1 j a l y
75 63 74 mpbird φ a A j 1 K j + l = 1 j a l f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
76 5 a1i φ a A B = f | f : 1 K 1 N + K x 1 K y 1 K x < y f x < f y
77 75 76 eleqtrrd φ a A j 1 K j + l = 1 j a l B
78 77 3 fmptd φ F : A B