Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones8.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones8.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones8.3 |
|- F = ( a e. A |-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ) |
4 |
|
sticksstones8.4 |
|- A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } |
5 |
|
sticksstones8.5 |
|- B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
6 |
|
eqidd |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> ( e e. ( 1 ... K ) |-> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) ) = ( e e. ( 1 ... K ) |-> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) ) ) |
7 |
|
simpr |
|- ( ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) /\ e = j ) -> e = j ) |
8 |
7
|
oveq2d |
|- ( ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) /\ e = j ) -> ( 1 ... e ) = ( 1 ... j ) ) |
9 |
8
|
sumeq1d |
|- ( ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) /\ e = j ) -> sum_ l e. ( 1 ... e ) ( a ` l ) = sum_ l e. ( 1 ... j ) ( a ` l ) ) |
10 |
7 9
|
oveq12d |
|- ( ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) /\ e = j ) -> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) = ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) |
11 |
|
simp3 |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> j e. ( 1 ... K ) ) |
12 |
|
ovexd |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) e. _V ) |
13 |
6 10 11 12
|
fvmptd |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> ( ( e e. ( 1 ... K ) |-> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) ) ` j ) = ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) |
14 |
1
|
3ad2ant1 |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> N e. NN0 ) |
15 |
2
|
3ad2ant1 |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> K e. NN0 ) |
16 |
|
simpr |
|- ( ( ph /\ a e. A ) -> a e. A ) |
17 |
4
|
a1i |
|- ( ( ph /\ a e. A ) -> A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
18 |
17
|
eqcomd |
|- ( ( ph /\ a e. A ) -> { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } = A ) |
19 |
16 18
|
eleqtrrd |
|- ( ( ph /\ a e. A ) -> a e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
20 |
|
feq1 |
|- ( g = a -> ( g : ( 1 ... ( K + 1 ) ) --> NN0 <-> a : ( 1 ... ( K + 1 ) ) --> NN0 ) ) |
21 |
|
simpl |
|- ( ( g = a /\ i e. ( 1 ... ( K + 1 ) ) ) -> g = a ) |
22 |
21
|
fveq1d |
|- ( ( g = a /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( g ` i ) = ( a ` i ) ) |
23 |
22
|
sumeq2dv |
|- ( g = a -> sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) ) |
24 |
23
|
eqeq1d |
|- ( g = a -> ( sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N <-> sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) |
25 |
20 24
|
anbi12d |
|- ( g = a -> ( ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) <-> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) ) |
26 |
25
|
elabg |
|- ( a e. A -> ( a e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) ) |
27 |
16 26
|
syl |
|- ( ( ph /\ a e. A ) -> ( a e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) ) |
28 |
27
|
biimpd |
|- ( ( ph /\ a e. A ) -> ( a e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } -> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) ) |
29 |
19 28
|
mpd |
|- ( ( ph /\ a e. A ) -> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) |
30 |
29
|
simpld |
|- ( ( ph /\ a e. A ) -> a : ( 1 ... ( K + 1 ) ) --> NN0 ) |
31 |
30
|
3adant3 |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> a : ( 1 ... ( K + 1 ) ) --> NN0 ) |
32 |
|
eqid |
|- ( e e. ( 1 ... K ) |-> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) ) = ( e e. ( 1 ... K ) |-> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) ) |
33 |
|
fveq2 |
|- ( i = l -> ( a ` i ) = ( a ` l ) ) |
34 |
|
nfcv |
|- F/_ l ( 1 ... ( K + 1 ) ) |
35 |
|
nfcv |
|- F/_ i ( 1 ... ( K + 1 ) ) |
36 |
|
nfcv |
|- F/_ l ( a ` i ) |
37 |
|
nfcv |
|- F/_ i ( a ` l ) |
38 |
33 34 35 36 37
|
cbvsum |
|- sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = sum_ l e. ( 1 ... ( K + 1 ) ) ( a ` l ) |
39 |
29
|
simprd |
|- ( ( ph /\ a e. A ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) |
40 |
38 39
|
eqtr3id |
|- ( ( ph /\ a e. A ) -> sum_ l e. ( 1 ... ( K + 1 ) ) ( a ` l ) = N ) |
41 |
40
|
3adant3 |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> sum_ l e. ( 1 ... ( K + 1 ) ) ( a ` l ) = N ) |
42 |
14 15 31 11 32 41
|
sticksstones7 |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> ( ( e e. ( 1 ... K ) |-> ( e + sum_ l e. ( 1 ... e ) ( a ` l ) ) ) ` j ) e. ( 1 ... ( N + K ) ) ) |
43 |
13 42
|
eqeltrrd |
|- ( ( ph /\ a e. A /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) e. ( 1 ... ( N + K ) ) ) |
44 |
43
|
3expa |
|- ( ( ( ph /\ a e. A ) /\ j e. ( 1 ... K ) ) -> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) e. ( 1 ... ( N + K ) ) ) |
45 |
|
eqid |
|- ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) |
46 |
44 45
|
fmptd |
|- ( ( ph /\ a e. A ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
47 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) -> N e. NN0 ) |
48 |
47
|
adantr |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> N e. NN0 ) |
49 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) -> K e. NN0 ) |
50 |
49
|
adantr |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> K e. NN0 ) |
51 |
26
|
adantl |
|- ( ( ph /\ a e. A ) -> ( a e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) ) |
52 |
51
|
biimpd |
|- ( ( ph /\ a e. A ) -> ( a e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } -> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) ) |
53 |
19 52
|
mpd |
|- ( ( ph /\ a e. A ) -> ( a : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( a ` i ) = N ) ) |
54 |
53
|
simpld |
|- ( ( ph /\ a e. A ) -> a : ( 1 ... ( K + 1 ) ) --> NN0 ) |
55 |
54
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) -> a : ( 1 ... ( K + 1 ) ) --> NN0 ) |
56 |
55
|
adantr |
|- ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) -> a : ( 1 ... ( K + 1 ) ) --> NN0 ) |
57 |
56
|
adantr |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> a : ( 1 ... ( K + 1 ) ) --> NN0 ) |
58 |
|
simpllr |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> x e. ( 1 ... K ) ) |
59 |
|
simplr |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> y e. ( 1 ... K ) ) |
60 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> x < y ) |
61 |
48 50 57 58 59 60 45
|
sticksstones6 |
|- ( ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) /\ x < y ) -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) |
62 |
61
|
ex |
|- ( ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) /\ y e. ( 1 ... K ) ) -> ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) |
63 |
62
|
ralrimiva |
|- ( ( ( ph /\ a e. A ) /\ x e. ( 1 ... K ) ) -> A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) |
64 |
63
|
ralrimiva |
|- ( ( ph /\ a e. A ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) |
65 |
46 64
|
jca |
|- ( ( ph /\ a e. A ) -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) ) |
66 |
|
fzfid |
|- ( ( ph /\ a e. A ) -> ( 1 ... K ) e. Fin ) |
67 |
46 66
|
fexd |
|- ( ( ph /\ a e. A ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) e. _V ) |
68 |
|
feq1 |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) <-> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) ) |
69 |
|
fveq1 |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( f ` x ) = ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) ) |
70 |
|
fveq1 |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( f ` y ) = ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) |
71 |
69 70
|
breq12d |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( ( f ` x ) < ( f ` y ) <-> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) |
72 |
71
|
imbi2d |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) ) |
73 |
72
|
2ralbidv |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) ) |
74 |
68 73
|
anbi12d |
|- ( f = ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) -> ( ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) ) ) |
75 |
74
|
elabg |
|- ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) e. _V -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } <-> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) ) ) |
76 |
67 75
|
syl |
|- ( ( ph /\ a e. A ) -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } <-> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` x ) < ( ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) ` y ) ) ) ) ) |
77 |
65 76
|
mpbird |
|- ( ( ph /\ a e. A ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } ) |
78 |
5
|
a1i |
|- ( ( ph /\ a e. A ) -> B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } ) |
79 |
77 78
|
eleqtrrd |
|- ( ( ph /\ a e. A ) -> ( j e. ( 1 ... K ) |-> ( j + sum_ l e. ( 1 ... j ) ( a ` l ) ) ) e. B ) |
80 |
79 3
|
fmptd |
|- ( ph -> F : A --> B ) |