Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones7.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones7.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones7.3 |
|- ( ph -> G : ( 1 ... ( K + 1 ) ) --> NN0 ) |
4 |
|
sticksstones7.4 |
|- ( ph -> X e. ( 1 ... K ) ) |
5 |
|
sticksstones7.5 |
|- F = ( x e. ( 1 ... K ) |-> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) ) |
6 |
|
sticksstones7.6 |
|- ( ph -> sum_ i e. ( 1 ... ( K + 1 ) ) ( G ` i ) = N ) |
7 |
5
|
a1i |
|- ( ph -> F = ( x e. ( 1 ... K ) |-> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) ) ) |
8 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
9 |
8
|
oveq2d |
|- ( ( ph /\ x = X ) -> ( 1 ... x ) = ( 1 ... X ) ) |
10 |
9
|
sumeq1d |
|- ( ( ph /\ x = X ) -> sum_ i e. ( 1 ... x ) ( G ` i ) = sum_ i e. ( 1 ... X ) ( G ` i ) ) |
11 |
8 10
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) = ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) ) |
12 |
|
elfznn |
|- ( X e. ( 1 ... K ) -> X e. NN ) |
13 |
4 12
|
syl |
|- ( ph -> X e. NN ) |
14 |
13
|
nnnn0d |
|- ( ph -> X e. NN0 ) |
15 |
|
fzfid |
|- ( ph -> ( 1 ... X ) e. Fin ) |
16 |
|
1zzd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> 1 e. ZZ ) |
17 |
2
|
nn0zd |
|- ( ph -> K e. ZZ ) |
18 |
17
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> K e. ZZ ) |
19 |
18
|
peano2zd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> ( K + 1 ) e. ZZ ) |
20 |
|
elfzelz |
|- ( i e. ( 1 ... X ) -> i e. ZZ ) |
21 |
20
|
adantl |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. ZZ ) |
22 |
|
elfzle1 |
|- ( i e. ( 1 ... X ) -> 1 <_ i ) |
23 |
22
|
adantl |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> 1 <_ i ) |
24 |
21
|
zred |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. RR ) |
25 |
13
|
nnred |
|- ( ph -> X e. RR ) |
26 |
25
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> X e. RR ) |
27 |
19
|
zred |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> ( K + 1 ) e. RR ) |
28 |
|
elfzle2 |
|- ( i e. ( 1 ... X ) -> i <_ X ) |
29 |
28
|
adantl |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i <_ X ) |
30 |
2
|
nn0red |
|- ( ph -> K e. RR ) |
31 |
|
1red |
|- ( ph -> 1 e. RR ) |
32 |
30 31
|
readdcld |
|- ( ph -> ( K + 1 ) e. RR ) |
33 |
|
elfzle2 |
|- ( X e. ( 1 ... K ) -> X <_ K ) |
34 |
4 33
|
syl |
|- ( ph -> X <_ K ) |
35 |
30
|
lep1d |
|- ( ph -> K <_ ( K + 1 ) ) |
36 |
25 30 32 34 35
|
letrd |
|- ( ph -> X <_ ( K + 1 ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> X <_ ( K + 1 ) ) |
38 |
24 26 27 29 37
|
letrd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i <_ ( K + 1 ) ) |
39 |
16 19 21 23 38
|
elfzd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
40 |
3
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> G : ( 1 ... ( K + 1 ) ) --> NN0 ) |
41 |
40
|
ffvelrnda |
|- ( ( ( ph /\ i e. ( 1 ... X ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
42 |
39 41
|
mpdan |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> ( G ` i ) e. NN0 ) |
43 |
15 42
|
fsumnn0cl |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) e. NN0 ) |
44 |
14 43
|
nn0addcld |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) e. NN0 ) |
45 |
7 11 4 44
|
fvmptd |
|- ( ph -> ( F ` X ) = ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) ) |
46 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
47 |
1
|
nn0zd |
|- ( ph -> N e. ZZ ) |
48 |
47 17
|
zaddcld |
|- ( ph -> ( N + K ) e. ZZ ) |
49 |
44
|
nn0zd |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) e. ZZ ) |
50 |
|
eqid |
|- 1 = 1 |
51 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
52 |
50 51
|
eqtr4i |
|- 1 = ( 1 + 0 ) |
53 |
52
|
a1i |
|- ( ph -> 1 = ( 1 + 0 ) ) |
54 |
|
0red |
|- ( ph -> 0 e. RR ) |
55 |
43
|
nn0red |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) e. RR ) |
56 |
13
|
nnge1d |
|- ( ph -> 1 <_ X ) |
57 |
43
|
nn0ge0d |
|- ( ph -> 0 <_ sum_ i e. ( 1 ... X ) ( G ` i ) ) |
58 |
31 54 25 55 56 57
|
le2addd |
|- ( ph -> ( 1 + 0 ) <_ ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) ) |
59 |
53 58
|
eqbrtrd |
|- ( ph -> 1 <_ ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) ) |
60 |
1
|
nn0red |
|- ( ph -> N e. RR ) |
61 |
|
fzfid |
|- ( ph -> ( ( X + 1 ) ... ( K + 1 ) ) e. Fin ) |
62 |
46
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> 1 e. ZZ ) |
63 |
17
|
peano2zd |
|- ( ph -> ( K + 1 ) e. ZZ ) |
64 |
63
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> ( K + 1 ) e. ZZ ) |
65 |
|
elfzelz |
|- ( i e. ( ( X + 1 ) ... ( K + 1 ) ) -> i e. ZZ ) |
66 |
65
|
adantl |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> i e. ZZ ) |
67 |
31
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> 1 e. RR ) |
68 |
25
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> X e. RR ) |
69 |
68 67
|
readdcld |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> ( X + 1 ) e. RR ) |
70 |
66
|
zred |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> i e. RR ) |
71 |
56
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> 1 <_ X ) |
72 |
68
|
lep1d |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> X <_ ( X + 1 ) ) |
73 |
67 68 69 71 72
|
letrd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> 1 <_ ( X + 1 ) ) |
74 |
|
elfzle1 |
|- ( i e. ( ( X + 1 ) ... ( K + 1 ) ) -> ( X + 1 ) <_ i ) |
75 |
74
|
adantl |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> ( X + 1 ) <_ i ) |
76 |
67 69 70 73 75
|
letrd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> 1 <_ i ) |
77 |
|
elfzle2 |
|- ( i e. ( ( X + 1 ) ... ( K + 1 ) ) -> i <_ ( K + 1 ) ) |
78 |
77
|
adantl |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> i <_ ( K + 1 ) ) |
79 |
62 64 66 76 78
|
elfzd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
80 |
3
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
81 |
80
|
adantlr |
|- ( ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
82 |
79 81
|
mpdan |
|- ( ( ph /\ i e. ( ( X + 1 ) ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
83 |
61 82
|
fsumnn0cl |
|- ( ph -> sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) e. NN0 ) |
84 |
83
|
nn0ge0d |
|- ( ph -> 0 <_ sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) ) |
85 |
83
|
nn0red |
|- ( ph -> sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) e. RR ) |
86 |
55 85
|
addge01d |
|- ( ph -> ( 0 <_ sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) <-> sum_ i e. ( 1 ... X ) ( G ` i ) <_ ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) ) ) ) |
87 |
84 86
|
mpbid |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) <_ ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) ) ) |
88 |
25
|
ltp1d |
|- ( ph -> X < ( X + 1 ) ) |
89 |
|
fzdisj |
|- ( X < ( X + 1 ) -> ( ( 1 ... X ) i^i ( ( X + 1 ) ... ( K + 1 ) ) ) = (/) ) |
90 |
88 89
|
syl |
|- ( ph -> ( ( 1 ... X ) i^i ( ( X + 1 ) ... ( K + 1 ) ) ) = (/) ) |
91 |
14
|
nn0zd |
|- ( ph -> X e. ZZ ) |
92 |
46 63 91 56 36
|
elfzd |
|- ( ph -> X e. ( 1 ... ( K + 1 ) ) ) |
93 |
|
fzsplit |
|- ( X e. ( 1 ... ( K + 1 ) ) -> ( 1 ... ( K + 1 ) ) = ( ( 1 ... X ) u. ( ( X + 1 ) ... ( K + 1 ) ) ) ) |
94 |
92 93
|
syl |
|- ( ph -> ( 1 ... ( K + 1 ) ) = ( ( 1 ... X ) u. ( ( X + 1 ) ... ( K + 1 ) ) ) ) |
95 |
|
fzfid |
|- ( ph -> ( 1 ... ( K + 1 ) ) e. Fin ) |
96 |
|
nn0cn |
|- ( ( G ` i ) e. NN0 -> ( G ` i ) e. CC ) |
97 |
80 96
|
syl |
|- ( ( ph /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. CC ) |
98 |
90 94 95 97
|
fsumsplit |
|- ( ph -> sum_ i e. ( 1 ... ( K + 1 ) ) ( G ` i ) = ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... ( K + 1 ) ) ( G ` i ) ) ) |
99 |
87 98
|
breqtrrd |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) <_ sum_ i e. ( 1 ... ( K + 1 ) ) ( G ` i ) ) |
100 |
6
|
eqcomd |
|- ( ph -> N = sum_ i e. ( 1 ... ( K + 1 ) ) ( G ` i ) ) |
101 |
99 100
|
breqtrrd |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) <_ N ) |
102 |
25 55 30 60 34 101
|
le2addd |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) <_ ( K + N ) ) |
103 |
2
|
nn0cnd |
|- ( ph -> K e. CC ) |
104 |
1
|
nn0cnd |
|- ( ph -> N e. CC ) |
105 |
103 104
|
addcomd |
|- ( ph -> ( K + N ) = ( N + K ) ) |
106 |
102 105
|
breqtrd |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) <_ ( N + K ) ) |
107 |
46 48 49 59 106
|
elfzd |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) e. ( 1 ... ( N + K ) ) ) |
108 |
45 107
|
eqeltrd |
|- ( ph -> ( F ` X ) e. ( 1 ... ( N + K ) ) ) |