Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones7.1 |
|
2 |
|
sticksstones7.2 |
|
3 |
|
sticksstones7.3 |
|
4 |
|
sticksstones7.4 |
|
5 |
|
sticksstones7.5 |
|
6 |
|
sticksstones7.6 |
|
7 |
5
|
a1i |
|
8 |
|
simpr |
|
9 |
8
|
oveq2d |
|
10 |
9
|
sumeq1d |
|
11 |
8 10
|
oveq12d |
|
12 |
|
elfznn |
|
13 |
4 12
|
syl |
|
14 |
13
|
nnnn0d |
|
15 |
|
fzfid |
|
16 |
|
1zzd |
|
17 |
2
|
nn0zd |
|
18 |
17
|
adantr |
|
19 |
18
|
peano2zd |
|
20 |
|
elfzelz |
|
21 |
20
|
adantl |
|
22 |
|
elfzle1 |
|
23 |
22
|
adantl |
|
24 |
21
|
zred |
|
25 |
13
|
nnred |
|
26 |
25
|
adantr |
|
27 |
19
|
zred |
|
28 |
|
elfzle2 |
|
29 |
28
|
adantl |
|
30 |
2
|
nn0red |
|
31 |
|
1red |
|
32 |
30 31
|
readdcld |
|
33 |
|
elfzle2 |
|
34 |
4 33
|
syl |
|
35 |
30
|
lep1d |
|
36 |
25 30 32 34 35
|
letrd |
|
37 |
36
|
adantr |
|
38 |
24 26 27 29 37
|
letrd |
|
39 |
16 19 21 23 38
|
elfzd |
|
40 |
3
|
adantr |
|
41 |
40
|
ffvelrnda |
|
42 |
39 41
|
mpdan |
|
43 |
15 42
|
fsumnn0cl |
|
44 |
14 43
|
nn0addcld |
|
45 |
7 11 4 44
|
fvmptd |
|
46 |
|
1zzd |
|
47 |
1
|
nn0zd |
|
48 |
47 17
|
zaddcld |
|
49 |
44
|
nn0zd |
|
50 |
|
eqid |
|
51 |
|
1p0e1 |
|
52 |
50 51
|
eqtr4i |
|
53 |
52
|
a1i |
|
54 |
|
0red |
|
55 |
43
|
nn0red |
|
56 |
13
|
nnge1d |
|
57 |
43
|
nn0ge0d |
|
58 |
31 54 25 55 56 57
|
le2addd |
|
59 |
53 58
|
eqbrtrd |
|
60 |
1
|
nn0red |
|
61 |
|
fzfid |
|
62 |
46
|
adantr |
|
63 |
17
|
peano2zd |
|
64 |
63
|
adantr |
|
65 |
|
elfzelz |
|
66 |
65
|
adantl |
|
67 |
31
|
adantr |
|
68 |
25
|
adantr |
|
69 |
68 67
|
readdcld |
|
70 |
66
|
zred |
|
71 |
56
|
adantr |
|
72 |
68
|
lep1d |
|
73 |
67 68 69 71 72
|
letrd |
|
74 |
|
elfzle1 |
|
75 |
74
|
adantl |
|
76 |
67 69 70 73 75
|
letrd |
|
77 |
|
elfzle2 |
|
78 |
77
|
adantl |
|
79 |
62 64 66 76 78
|
elfzd |
|
80 |
3
|
ffvelrnda |
|
81 |
80
|
adantlr |
|
82 |
79 81
|
mpdan |
|
83 |
61 82
|
fsumnn0cl |
|
84 |
83
|
nn0ge0d |
|
85 |
83
|
nn0red |
|
86 |
55 85
|
addge01d |
|
87 |
84 86
|
mpbid |
|
88 |
25
|
ltp1d |
|
89 |
|
fzdisj |
|
90 |
88 89
|
syl |
|
91 |
14
|
nn0zd |
|
92 |
46 63 91 56 36
|
elfzd |
|
93 |
|
fzsplit |
|
94 |
92 93
|
syl |
|
95 |
|
fzfid |
|
96 |
|
nn0cn |
|
97 |
80 96
|
syl |
|
98 |
90 94 95 97
|
fsumsplit |
|
99 |
87 98
|
breqtrrd |
|
100 |
6
|
eqcomd |
|
101 |
99 100
|
breqtrrd |
|
102 |
25 55 30 60 34 101
|
le2addd |
|
103 |
2
|
nn0cnd |
|
104 |
1
|
nn0cnd |
|
105 |
103 104
|
addcomd |
|
106 |
102 105
|
breqtrd |
|
107 |
46 48 49 59 106
|
elfzd |
|
108 |
45 107
|
eqeltrd |
|