Metamath Proof Explorer


Theorem sticksstones7

Description: Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024)

Ref Expression
Hypotheses sticksstones7.1 φN0
sticksstones7.2 φK0
sticksstones7.3 φG:1K+10
sticksstones7.4 φX1K
sticksstones7.5 F=x1Kx+i=1xGi
sticksstones7.6 φi=1K+1Gi=N
Assertion sticksstones7 φFX1N+K

Proof

Step Hyp Ref Expression
1 sticksstones7.1 φN0
2 sticksstones7.2 φK0
3 sticksstones7.3 φG:1K+10
4 sticksstones7.4 φX1K
5 sticksstones7.5 F=x1Kx+i=1xGi
6 sticksstones7.6 φi=1K+1Gi=N
7 5 a1i φF=x1Kx+i=1xGi
8 simpr φx=Xx=X
9 8 oveq2d φx=X1x=1X
10 9 sumeq1d φx=Xi=1xGi=i=1XGi
11 8 10 oveq12d φx=Xx+i=1xGi=X+i=1XGi
12 elfznn X1KX
13 4 12 syl φX
14 13 nnnn0d φX0
15 fzfid φ1XFin
16 1zzd φi1X1
17 2 nn0zd φK
18 17 adantr φi1XK
19 18 peano2zd φi1XK+1
20 elfzelz i1Xi
21 20 adantl φi1Xi
22 elfzle1 i1X1i
23 22 adantl φi1X1i
24 21 zred φi1Xi
25 13 nnred φX
26 25 adantr φi1XX
27 19 zred φi1XK+1
28 elfzle2 i1XiX
29 28 adantl φi1XiX
30 2 nn0red φK
31 1red φ1
32 30 31 readdcld φK+1
33 elfzle2 X1KXK
34 4 33 syl φXK
35 30 lep1d φKK+1
36 25 30 32 34 35 letrd φXK+1
37 36 adantr φi1XXK+1
38 24 26 27 29 37 letrd φi1XiK+1
39 16 19 21 23 38 elfzd φi1Xi1K+1
40 3 adantr φi1XG:1K+10
41 40 ffvelcdmda φi1Xi1K+1Gi0
42 39 41 mpdan φi1XGi0
43 15 42 fsumnn0cl φi=1XGi0
44 14 43 nn0addcld φX+i=1XGi0
45 7 11 4 44 fvmptd φFX=X+i=1XGi
46 1zzd φ1
47 1 nn0zd φN
48 47 17 zaddcld φN+K
49 44 nn0zd φX+i=1XGi
50 eqid 1=1
51 1p0e1 1+0=1
52 50 51 eqtr4i 1=1+0
53 52 a1i φ1=1+0
54 0red φ0
55 43 nn0red φi=1XGi
56 13 nnge1d φ1X
57 43 nn0ge0d φ0i=1XGi
58 31 54 25 55 56 57 le2addd φ1+0X+i=1XGi
59 53 58 eqbrtrd φ1X+i=1XGi
60 1 nn0red φN
61 fzfid φX+1K+1Fin
62 46 adantr φiX+1K+11
63 17 peano2zd φK+1
64 63 adantr φiX+1K+1K+1
65 elfzelz iX+1K+1i
66 65 adantl φiX+1K+1i
67 31 adantr φiX+1K+11
68 25 adantr φiX+1K+1X
69 68 67 readdcld φiX+1K+1X+1
70 66 zred φiX+1K+1i
71 56 adantr φiX+1K+11X
72 68 lep1d φiX+1K+1XX+1
73 67 68 69 71 72 letrd φiX+1K+11X+1
74 elfzle1 iX+1K+1X+1i
75 74 adantl φiX+1K+1X+1i
76 67 69 70 73 75 letrd φiX+1K+11i
77 elfzle2 iX+1K+1iK+1
78 77 adantl φiX+1K+1iK+1
79 62 64 66 76 78 elfzd φiX+1K+1i1K+1
80 3 ffvelcdmda φi1K+1Gi0
81 80 adantlr φiX+1K+1i1K+1Gi0
82 79 81 mpdan φiX+1K+1Gi0
83 61 82 fsumnn0cl φi=X+1K+1Gi0
84 83 nn0ge0d φ0i=X+1K+1Gi
85 83 nn0red φi=X+1K+1Gi
86 55 85 addge01d φ0i=X+1K+1Gii=1XGii=1XGi+i=X+1K+1Gi
87 84 86 mpbid φi=1XGii=1XGi+i=X+1K+1Gi
88 25 ltp1d φX<X+1
89 fzdisj X<X+11XX+1K+1=
90 88 89 syl φ1XX+1K+1=
91 14 nn0zd φX
92 46 63 91 56 36 elfzd φX1K+1
93 fzsplit X1K+11K+1=1XX+1K+1
94 92 93 syl φ1K+1=1XX+1K+1
95 fzfid φ1K+1Fin
96 nn0cn Gi0Gi
97 80 96 syl φi1K+1Gi
98 90 94 95 97 fsumsplit φi=1K+1Gi=i=1XGi+i=X+1K+1Gi
99 87 98 breqtrrd φi=1XGii=1K+1Gi
100 6 eqcomd φN=i=1K+1Gi
101 99 100 breqtrrd φi=1XGiN
102 25 55 30 60 34 101 le2addd φX+i=1XGiK+N
103 2 nn0cnd φK
104 1 nn0cnd φN
105 103 104 addcomd φK+N=N+K
106 102 105 breqtrd φX+i=1XGiN+K
107 46 48 49 59 106 elfzd φX+i=1XGi1N+K
108 45 107 eqeltrd φFX1N+K