Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones7.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones7.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones7.3 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
4 |
|
sticksstones7.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝐾 ) ) |
5 |
|
sticksstones7.5 |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) ) |
6 |
|
sticksstones7.6 |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = 𝑁 ) |
7 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 1 ... 𝑥 ) = ( 1 ... 𝑋 ) ) |
10 |
9
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) |
11 |
8 10
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
12 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ∈ ℕ ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℕ ) |
14 |
13
|
nnnn0d |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
15 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑋 ) ∈ Fin ) |
16 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ∈ ℤ ) |
17 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ∈ ℤ ) |
19 |
18
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
20 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ∈ ℤ ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℤ ) |
22 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 1 ≤ 𝑖 ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ≤ 𝑖 ) |
24 |
21
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℝ ) |
25 |
13
|
nnred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ∈ ℝ ) |
27 |
19
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
28 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ≤ 𝑋 ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ 𝑋 ) |
30 |
2
|
nn0red |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
31 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
32 |
30 31
|
readdcld |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℝ ) |
33 |
|
elfzle2 |
⊢ ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ≤ 𝐾 ) |
34 |
4 33
|
syl |
⊢ ( 𝜑 → 𝑋 ≤ 𝐾 ) |
35 |
30
|
lep1d |
⊢ ( 𝜑 → 𝐾 ≤ ( 𝐾 + 1 ) ) |
36 |
25 30 32 34 35
|
letrd |
⊢ ( 𝜑 → 𝑋 ≤ ( 𝐾 + 1 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ≤ ( 𝐾 + 1 ) ) |
38 |
24 26 27 29 37
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
39 |
16 19 21 23 38
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
40 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
41 |
40
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
42 |
39 41
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
43 |
15 42
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
44 |
14 43
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℕ0 ) |
45 |
7 11 4 44
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
46 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
47 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
48 |
47 17
|
zaddcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
49 |
44
|
nn0zd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℤ ) |
50 |
|
eqid |
⊢ 1 = 1 |
51 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
52 |
50 51
|
eqtr4i |
⊢ 1 = ( 1 + 0 ) |
53 |
52
|
a1i |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
54 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
55 |
43
|
nn0red |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
56 |
13
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑋 ) |
57 |
43
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) |
58 |
31 54 25 55 56 57
|
le2addd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
59 |
53 58
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
60 |
1
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
61 |
|
fzfid |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ∈ Fin ) |
62 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℤ ) |
63 |
17
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
65 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) → 𝑖 ∈ ℤ ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
67 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℝ ) |
68 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑋 ∈ ℝ ) |
69 |
68 67
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝑋 + 1 ) ∈ ℝ ) |
70 |
66
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℝ ) |
71 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑋 ) |
72 |
68
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑋 ≤ ( 𝑋 + 1 ) ) |
73 |
67 68 69 71 72
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ≤ ( 𝑋 + 1 ) ) |
74 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) → ( 𝑋 + 1 ) ≤ 𝑖 ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝑋 + 1 ) ≤ 𝑖 ) |
76 |
67 69 70 73 75
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑖 ) |
77 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
79 |
62 64 66 76 78
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
80 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
81 |
80
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
82 |
79 81
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
83 |
61 82
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
84 |
83
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) |
85 |
83
|
nn0red |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
86 |
55 85
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
87 |
84 86
|
mpbid |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) ) |
88 |
25
|
ltp1d |
⊢ ( 𝜑 → 𝑋 < ( 𝑋 + 1 ) ) |
89 |
|
fzdisj |
⊢ ( 𝑋 < ( 𝑋 + 1 ) → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) = ∅ ) |
90 |
88 89
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) = ∅ ) |
91 |
14
|
nn0zd |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
92 |
46 63 91 56 36
|
elfzd |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
93 |
|
fzsplit |
⊢ ( 𝑋 ∈ ( 1 ... ( 𝐾 + 1 ) ) → ( 1 ... ( 𝐾 + 1 ) ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) ) |
94 |
92 93
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝐾 + 1 ) ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) ) |
95 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
96 |
|
nn0cn |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
97 |
80 96
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
98 |
90 94 95 97
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) ) |
99 |
87 98
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) |
100 |
6
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) |
101 |
99 100
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ 𝑁 ) |
102 |
25 55 30 60 34 101
|
le2addd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ≤ ( 𝐾 + 𝑁 ) ) |
103 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
104 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
105 |
103 104
|
addcomd |
⊢ ( 𝜑 → ( 𝐾 + 𝑁 ) = ( 𝑁 + 𝐾 ) ) |
106 |
102 105
|
breqtrd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ≤ ( 𝑁 + 𝐾 ) ) |
107 |
46 48 49 59 106
|
elfzd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
108 |
45 107
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |