| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones7.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones7.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 3 |
|
sticksstones7.3 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 4 |
|
sticksstones7.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝐾 ) ) |
| 5 |
|
sticksstones7.5 |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 6 |
|
sticksstones7.6 |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = 𝑁 ) |
| 7 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 1 ... 𝑥 ) = ( 1 ... 𝑋 ) ) |
| 10 |
9
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) |
| 11 |
8 10
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 12 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ∈ ℕ ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℕ ) |
| 14 |
13
|
nnnn0d |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
| 15 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑋 ) ∈ Fin ) |
| 16 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ∈ ℤ ) |
| 17 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ∈ ℤ ) |
| 19 |
18
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 20 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ∈ ℤ ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℤ ) |
| 22 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 1 ≤ 𝑖 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ≤ 𝑖 ) |
| 24 |
21
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℝ ) |
| 25 |
13
|
nnred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ∈ ℝ ) |
| 27 |
19
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 28 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ≤ 𝑋 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ 𝑋 ) |
| 30 |
2
|
nn0red |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 31 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 32 |
30 31
|
readdcld |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℝ ) |
| 33 |
|
elfzle2 |
⊢ ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ≤ 𝐾 ) |
| 34 |
4 33
|
syl |
⊢ ( 𝜑 → 𝑋 ≤ 𝐾 ) |
| 35 |
30
|
lep1d |
⊢ ( 𝜑 → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 36 |
25 30 32 34 35
|
letrd |
⊢ ( 𝜑 → 𝑋 ≤ ( 𝐾 + 1 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ≤ ( 𝐾 + 1 ) ) |
| 38 |
24 26 27 29 37
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 39 |
16 19 21 23 38
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 40 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 41 |
40
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 42 |
39 41
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 43 |
15 42
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 44 |
14 43
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℕ0 ) |
| 45 |
7 11 4 44
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 46 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 47 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 48 |
47 17
|
zaddcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
| 49 |
44
|
nn0zd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℤ ) |
| 50 |
|
eqid |
⊢ 1 = 1 |
| 51 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 52 |
50 51
|
eqtr4i |
⊢ 1 = ( 1 + 0 ) |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
| 54 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 55 |
43
|
nn0red |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 56 |
13
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑋 ) |
| 57 |
43
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) |
| 58 |
31 54 25 55 56 57
|
le2addd |
⊢ ( 𝜑 → ( 1 + 0 ) ≤ ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 59 |
53 58
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 60 |
1
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 61 |
|
fzfid |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ∈ Fin ) |
| 62 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℤ ) |
| 63 |
17
|
peano2zd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℤ ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 65 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) → 𝑖 ∈ ℤ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 67 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℝ ) |
| 68 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑋 ∈ ℝ ) |
| 69 |
68 67
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝑋 + 1 ) ∈ ℝ ) |
| 70 |
66
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 71 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑋 ) |
| 72 |
68
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑋 ≤ ( 𝑋 + 1 ) ) |
| 73 |
67 68 69 71 72
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ≤ ( 𝑋 + 1 ) ) |
| 74 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) → ( 𝑋 + 1 ) ≤ 𝑖 ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝑋 + 1 ) ≤ 𝑖 ) |
| 76 |
67 69 70 73 75
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑖 ) |
| 77 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 79 |
62 64 66 76 78
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 80 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 81 |
80
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 82 |
79 81
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 83 |
61 82
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 84 |
83
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) |
| 85 |
83
|
nn0red |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 86 |
55 85
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 87 |
84 86
|
mpbid |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 88 |
25
|
ltp1d |
⊢ ( 𝜑 → 𝑋 < ( 𝑋 + 1 ) ) |
| 89 |
|
fzdisj |
⊢ ( 𝑋 < ( 𝑋 + 1 ) → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) = ∅ ) |
| 90 |
88 89
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) = ∅ ) |
| 91 |
14
|
nn0zd |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
| 92 |
46 63 91 56 36
|
elfzd |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 93 |
|
fzsplit |
⊢ ( 𝑋 ∈ ( 1 ... ( 𝐾 + 1 ) ) → ( 1 ... ( 𝐾 + 1 ) ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) ) |
| 94 |
92 93
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝐾 + 1 ) ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ) ) |
| 95 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
| 96 |
|
nn0cn |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 97 |
80 96
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 98 |
90 94 95 97
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 99 |
87 98
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) |
| 100 |
6
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) |
| 101 |
99 100
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ 𝑁 ) |
| 102 |
25 55 30 60 34 101
|
le2addd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ≤ ( 𝐾 + 𝑁 ) ) |
| 103 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 104 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 105 |
103 104
|
addcomd |
⊢ ( 𝜑 → ( 𝐾 + 𝑁 ) = ( 𝑁 + 𝐾 ) ) |
| 106 |
102 105
|
breqtrd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ≤ ( 𝑁 + 𝐾 ) ) |
| 107 |
46 48 49 59 106
|
elfzd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 108 |
45 107
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |