Metamath Proof Explorer


Theorem sticksstones8

Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024)

Ref Expression
Hypotheses sticksstones8.1 ( 𝜑𝑁 ∈ ℕ0 )
sticksstones8.2 ( 𝜑𝐾 ∈ ℕ0 )
sticksstones8.3 𝐹 = ( 𝑎𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) )
sticksstones8.4 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) }
sticksstones8.5 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) }
Assertion sticksstones8 ( 𝜑𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 sticksstones8.1 ( 𝜑𝑁 ∈ ℕ0 )
2 sticksstones8.2 ( 𝜑𝐾 ∈ ℕ0 )
3 sticksstones8.3 𝐹 = ( 𝑎𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) )
4 sticksstones8.4 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) }
5 sticksstones8.5 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) }
6 eqidd ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) ) = ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) ) )
7 simpr ( ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → 𝑒 = 𝑗 )
8 7 oveq2d ( ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → ( 1 ... 𝑒 ) = ( 1 ... 𝑗 ) )
9 8 sumeq1d ( ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) )
10 7 9 oveq12d ( ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) )
11 simp3 ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ( 1 ... 𝐾 ) )
12 ovexd ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ∈ V )
13 6 10 11 12 fvmptd ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) ) ‘ 𝑗 ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) )
14 1 3ad2ant1 ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑁 ∈ ℕ0 )
15 2 3ad2ant1 ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℕ0 )
16 simpr ( ( 𝜑𝑎𝐴 ) → 𝑎𝐴 )
17 4 a1i ( ( 𝜑𝑎𝐴 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } )
18 17 eqcomd ( ( 𝜑𝑎𝐴 ) → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } = 𝐴 )
19 16 18 eleqtrrd ( ( 𝜑𝑎𝐴 ) → 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } )
20 feq1 ( 𝑔 = 𝑎 → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) )
21 simpl ( ( 𝑔 = 𝑎𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = 𝑎 )
22 21 fveq1d ( ( 𝑔 = 𝑎𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔𝑖 ) = ( 𝑎𝑖 ) )
23 22 sumeq2dv ( 𝑔 = 𝑎 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) )
24 23 eqeq1d ( 𝑔 = 𝑎 → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) )
25 20 24 anbi12d ( 𝑔 = 𝑎 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) ) )
26 25 elabg ( 𝑎𝐴 → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) ) )
27 16 26 syl ( ( 𝜑𝑎𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) ) )
28 27 biimpd ( ( 𝜑𝑎𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) ) )
29 19 28 mpd ( ( 𝜑𝑎𝐴 ) → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) )
30 29 simpld ( ( 𝜑𝑎𝐴 ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
31 30 3adant3 ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
32 eqid ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) ) = ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) )
33 fveq2 ( 𝑖 = 𝑙 → ( 𝑎𝑖 ) = ( 𝑎𝑙 ) )
34 nfcv 𝑙 ( 1 ... ( 𝐾 + 1 ) )
35 nfcv 𝑖 ( 1 ... ( 𝐾 + 1 ) )
36 nfcv 𝑙 ( 𝑎𝑖 )
37 nfcv 𝑖 ( 𝑎𝑙 )
38 33 34 35 36 37 cbvsum Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑙 )
39 29 simprd ( ( 𝜑𝑎𝐴 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 )
40 38 39 eqtr3id ( ( 𝜑𝑎𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑙 ) = 𝑁 )
41 40 3adant3 ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑙 ) = 𝑁 )
42 14 15 31 11 32 41 sticksstones7 ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎𝑙 ) ) ) ‘ 𝑗 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) )
43 13 42 eqeltrrd ( ( 𝜑𝑎𝐴𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) )
44 43 3expa ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) )
45 eqid ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) )
46 44 45 fmptd ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) )
47 1 ad3antrrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑁 ∈ ℕ0 )
48 47 adantr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑁 ∈ ℕ0 )
49 2 ad3antrrr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℕ0 )
50 49 adantr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝐾 ∈ ℕ0 )
51 26 adantl ( ( 𝜑𝑎𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) ) )
52 51 biimpd ( ( 𝜑𝑎𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) ) )
53 19 52 mpd ( ( 𝜑𝑎𝐴 ) → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎𝑖 ) = 𝑁 ) )
54 53 simpld ( ( 𝜑𝑎𝐴 ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
55 54 adantr ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
56 55 adantr ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
57 56 adantr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
58 simpllr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ... 𝐾 ) )
59 simplr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 1 ... 𝐾 ) )
60 simpr ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 )
61 48 50 57 58 59 60 45 sticksstones6 ( ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) )
62 61 ex ( ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) )
63 62 ralrimiva ( ( ( 𝜑𝑎𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) → ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) )
64 63 ralrimiva ( ( 𝜑𝑎𝐴 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) )
65 46 64 jca ( ( 𝜑𝑎𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) ) )
66 fzfid ( ( 𝜑𝑎𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin )
67 46 66 fexd ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ V )
68 feq1 ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) )
69 fveq1 ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( 𝑓𝑥 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) )
70 fveq1 ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( 𝑓𝑦 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) )
71 69 70 breq12d ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) )
72 71 imbi2d ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) ) )
73 72 2ralbidv ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) ) )
74 68 73 anbi12d ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) ) ) )
75 74 elabg ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ V → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) ) ) )
76 67 75 syl ( ( 𝜑𝑎𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ‘ 𝑦 ) ) ) ) )
77 65 76 mpbird ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } )
78 5 a1i ( ( 𝜑𝑎𝐴 ) → 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } )
79 77 78 eleqtrrd ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ 𝐵 )
80 79 3 fmptd ( 𝜑𝐹 : 𝐴𝐵 )