Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones8.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones8.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones8.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
4 |
|
sticksstones8.4 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
5 |
|
sticksstones8.5 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → 𝑒 = 𝑗 ) |
8 |
7
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → ( 1 ... 𝑒 ) = ( 1 ... 𝑗 ) ) |
9 |
8
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) = Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) |
10 |
7 9
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑒 = 𝑗 ) → ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) |
11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑗 ∈ ( 1 ... 𝐾 ) ) |
12 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ∈ V ) |
13 |
6 10 11 12
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑗 ) = ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) |
14 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑁 ∈ ℕ0 ) |
15 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
17 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
18 |
17
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } = 𝐴 ) |
19 |
16 18
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
20 |
|
feq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
21 |
|
simpl |
⊢ ( ( 𝑔 = 𝑎 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = 𝑎 ) |
22 |
21
|
fveq1d |
⊢ ( ( 𝑔 = 𝑎 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑎 ‘ 𝑖 ) ) |
23 |
22
|
sumeq2dv |
⊢ ( 𝑔 = 𝑎 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑔 = 𝑎 → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) |
25 |
20 24
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
26 |
25
|
elabg |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
27 |
16 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
28 |
27
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
29 |
19 28
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) |
30 |
29
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
31 |
30
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
32 |
|
eqid |
⊢ ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑖 = 𝑙 → ( 𝑎 ‘ 𝑖 ) = ( 𝑎 ‘ 𝑙 ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 1 ... ( 𝐾 + 1 ) ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 1 ... ( 𝐾 + 1 ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 𝑎 ‘ 𝑖 ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑎 ‘ 𝑙 ) |
38 |
33 34 35 36 37
|
cbvsum |
⊢ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑙 ) |
39 |
29
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) |
40 |
38 39
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑙 ) = 𝑁 ) |
41 |
40
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑙 ) = 𝑁 ) |
42 |
14 15 31 11 32 41
|
sticksstones7 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑒 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑒 + Σ 𝑙 ∈ ( 1 ... 𝑒 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑗 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
43 |
13 42
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
44 |
43
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 1 ... 𝐾 ) ) → ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
45 |
|
eqid |
⊢ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) |
46 |
44 45
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
47 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑁 ∈ ℕ0 ) |
48 |
47
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑁 ∈ ℕ0 ) |
49 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
50 |
49
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝐾 ∈ ℕ0 ) |
51 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
52 |
51
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
53 |
19 52
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) |
54 |
53
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
56 |
55
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
57 |
56
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑎 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
58 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ... 𝐾 ) ) |
59 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 1 ... 𝐾 ) ) |
60 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
61 |
48 50 57 58 59 60 45
|
sticksstones6 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) |
62 |
61
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) |
63 |
62
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) → ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) |
64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) |
65 |
46 64
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) ) |
66 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
67 |
46 66
|
fexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ V ) |
68 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
69 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) ) |
70 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) |
71 |
69 70
|
breq12d |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) |
72 |
71
|
imbi2d |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) ) |
73 |
72
|
2ralbidv |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) ) |
74 |
68 73
|
anbi12d |
⊢ ( 𝑓 = ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) ) ) |
75 |
74
|
elabg |
⊢ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ V → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) ) ) |
76 |
67 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑥 ) < ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ‘ 𝑦 ) ) ) ) ) |
77 |
65 76
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
78 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
79 |
77 78
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ 𝐵 ) |
80 |
79 3
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |