| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones6.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones6.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 3 |
|
sticksstones6.3 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 4 |
|
sticksstones6.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝐾 ) ) |
| 5 |
|
sticksstones6.5 |
⊢ ( 𝜑 → 𝑌 ∈ ( 1 ... 𝐾 ) ) |
| 6 |
|
sticksstones6.6 |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
| 7 |
|
sticksstones6.7 |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 8 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ∈ ℕ ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℕ ) |
| 10 |
9
|
nnred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 11 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑋 ) ∈ Fin ) |
| 12 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ∈ ℤ ) |
| 13 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ∈ ℤ ) |
| 15 |
14
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 16 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ∈ ℕ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℕ ) |
| 18 |
17
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℤ ) |
| 19 |
17
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ≤ 𝑖 ) |
| 20 |
17
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℝ ) |
| 21 |
14
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ∈ ℝ ) |
| 22 |
15
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ∈ ℕ ) |
| 24 |
23
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ∈ ℝ ) |
| 25 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ≤ 𝑋 ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ 𝑋 ) |
| 27 |
|
elfzle2 |
⊢ ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ≤ 𝐾 ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → 𝑋 ≤ 𝐾 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ≤ 𝐾 ) |
| 30 |
20 24 21 26 29
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ 𝐾 ) |
| 31 |
21
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 32 |
20 21 22 30 31
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 33 |
12 15 18 19 32
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 36 |
34 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 37 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 38 |
33 37
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 39 |
11 38
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 40 |
39
|
nn0red |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 41 |
|
elfznn |
⊢ ( 𝑌 ∈ ( 1 ... 𝐾 ) → 𝑌 ∈ ℕ ) |
| 42 |
5 41
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ ℕ ) |
| 43 |
42
|
nnred |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 44 |
|
fzfid |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) ... 𝑌 ) ∈ Fin ) |
| 45 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ∈ ℤ ) |
| 46 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝐾 ∈ ℤ ) |
| 47 |
46
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 48 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) → 𝑖 ∈ ℤ ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ∈ ℤ ) |
| 50 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ∈ ℝ ) |
| 51 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑋 ∈ ℝ ) |
| 52 |
51 50
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝑋 + 1 ) ∈ ℝ ) |
| 53 |
49
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ∈ ℝ ) |
| 54 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 55 |
10 54
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ ℝ ) |
| 56 |
9
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑋 ) |
| 57 |
10
|
ltp1d |
⊢ ( 𝜑 → 𝑋 < ( 𝑋 + 1 ) ) |
| 58 |
10 55 57
|
ltled |
⊢ ( 𝜑 → 𝑋 ≤ ( 𝑋 + 1 ) ) |
| 59 |
54 10 55 56 58
|
letrd |
⊢ ( 𝜑 → 1 ≤ ( 𝑋 + 1 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ≤ ( 𝑋 + 1 ) ) |
| 61 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) → ( 𝑋 + 1 ) ≤ 𝑖 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝑋 + 1 ) ≤ 𝑖 ) |
| 63 |
50 52 53 60 62
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ≤ 𝑖 ) |
| 64 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑌 ∈ ℝ ) |
| 65 |
47
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 66 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) → 𝑖 ≤ 𝑌 ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ≤ 𝑌 ) |
| 68 |
46
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝐾 ∈ ℝ ) |
| 69 |
|
elfzle2 |
⊢ ( 𝑌 ∈ ( 1 ... 𝐾 ) → 𝑌 ≤ 𝐾 ) |
| 70 |
5 69
|
syl |
⊢ ( 𝜑 → 𝑌 ≤ 𝐾 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑌 ≤ 𝐾 ) |
| 72 |
68
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 73 |
64 68 65 71 72
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑌 ≤ ( 𝐾 + 1 ) ) |
| 74 |
53 64 65 67 73
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 75 |
45 47 49 63 74
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 76 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 77 |
75 76
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 78 |
77
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 79 |
44 78
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 80 |
40 79
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℝ ) |
| 81 |
77
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 0 ≤ ( 𝐺 ‘ 𝑖 ) ) |
| 82 |
44 78 81
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) |
| 83 |
40 79
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 84 |
82 83
|
mpbid |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 85 |
10 40 43 80 6 84
|
ltleaddd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) < ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 86 |
7
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 87 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
| 88 |
87
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 1 ... 𝑥 ) = ( 1 ... 𝑋 ) ) |
| 89 |
88
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) |
| 90 |
87 89
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 91 |
9
|
nnnn0d |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
| 92 |
91 39
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℕ0 ) |
| 93 |
86 90 4 92
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 94 |
93
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 ) |
| 96 |
95
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 1 ... 𝑥 ) = ( 1 ... 𝑌 ) ) |
| 97 |
96
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) |
| 98 |
95 97
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺 ‘ 𝑖 ) ) = ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 99 |
42
|
nnnn0d |
⊢ ( 𝜑 → 𝑌 ∈ ℕ0 ) |
| 100 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑌 ) ∈ Fin ) |
| 101 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 1 ∈ ℤ ) |
| 102 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝐾 ∈ ℤ ) |
| 103 |
102
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℤ ) |
| 104 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑌 ) → 𝑖 ∈ ℤ ) |
| 105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ∈ ℤ ) |
| 106 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑌 ) → 1 ≤ 𝑖 ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 1 ≤ 𝑖 ) |
| 108 |
105
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ∈ ℝ ) |
| 109 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑌 ∈ ℝ ) |
| 110 |
103
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 111 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑌 ) → 𝑖 ≤ 𝑌 ) |
| 112 |
111
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ≤ 𝑌 ) |
| 113 |
102
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝐾 ∈ ℝ ) |
| 114 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑌 ≤ 𝐾 ) |
| 115 |
113
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 116 |
109 113 110 114 115
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑌 ≤ ( 𝐾 + 1 ) ) |
| 117 |
108 109 110 112 116
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 118 |
101 103 105 107 117
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 119 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 120 |
118 119
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 121 |
100 120
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ∈ ℕ0 ) |
| 122 |
99 121
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ∈ ℕ0 ) |
| 123 |
86 98 5 122
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 124 |
|
fzdisj |
⊢ ( 𝑋 < ( 𝑋 + 1 ) → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... 𝑌 ) ) = ∅ ) |
| 125 |
57 124
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... 𝑌 ) ) = ∅ ) |
| 126 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 127 |
99
|
nn0zd |
⊢ ( 𝜑 → 𝑌 ∈ ℤ ) |
| 128 |
91
|
nn0zd |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
| 129 |
10 43 6
|
ltled |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
| 130 |
126 127 128 56 129
|
elfzd |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑌 ) ) |
| 131 |
|
fzsplit |
⊢ ( 𝑋 ∈ ( 1 ... 𝑌 ) → ( 1 ... 𝑌 ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... 𝑌 ) ) ) |
| 132 |
130 131
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑌 ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... 𝑌 ) ) ) |
| 133 |
120
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 134 |
133
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 135 |
125 132 100 134
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) = ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 137 |
123 136
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 138 |
137
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺 ‘ 𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 139 |
85 94 138
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑌 ) ) |