Metamath Proof Explorer


Theorem sticksstones6

Description: Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024)

Ref Expression
Hypotheses sticksstones6.1 ( 𝜑𝑁 ∈ ℕ0 )
sticksstones6.2 ( 𝜑𝐾 ∈ ℕ0 )
sticksstones6.3 ( 𝜑𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
sticksstones6.4 ( 𝜑𝑋 ∈ ( 1 ... 𝐾 ) )
sticksstones6.5 ( 𝜑𝑌 ∈ ( 1 ... 𝐾 ) )
sticksstones6.6 ( 𝜑𝑋 < 𝑌 )
sticksstones6.7 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) ) )
Assertion sticksstones6 ( 𝜑 → ( 𝐹𝑋 ) < ( 𝐹𝑌 ) )

Proof

Step Hyp Ref Expression
1 sticksstones6.1 ( 𝜑𝑁 ∈ ℕ0 )
2 sticksstones6.2 ( 𝜑𝐾 ∈ ℕ0 )
3 sticksstones6.3 ( 𝜑𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
4 sticksstones6.4 ( 𝜑𝑋 ∈ ( 1 ... 𝐾 ) )
5 sticksstones6.5 ( 𝜑𝑌 ∈ ( 1 ... 𝐾 ) )
6 sticksstones6.6 ( 𝜑𝑋 < 𝑌 )
7 sticksstones6.7 𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) ) )
8 elfznn ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋 ∈ ℕ )
9 4 8 syl ( 𝜑𝑋 ∈ ℕ )
10 9 nnred ( 𝜑𝑋 ∈ ℝ )
11 fzfid ( 𝜑 → ( 1 ... 𝑋 ) ∈ Fin )
12 1zzd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ∈ ℤ )
13 2 nn0zd ( 𝜑𝐾 ∈ ℤ )
14 13 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ∈ ℤ )
15 14 peano2zd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℤ )
16 elfznn ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖 ∈ ℕ )
17 16 adantl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℕ )
18 17 nnzd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℤ )
19 17 nnge1d ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 1 ≤ 𝑖 )
20 17 nnred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ℝ )
21 14 zred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ∈ ℝ )
22 15 zred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐾 + 1 ) ∈ ℝ )
23 9 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ∈ ℕ )
24 23 nnred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋 ∈ ℝ )
25 elfzle2 ( 𝑖 ∈ ( 1 ... 𝑋 ) → 𝑖𝑋 )
26 25 adantl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖𝑋 )
27 elfzle2 ( 𝑋 ∈ ( 1 ... 𝐾 ) → 𝑋𝐾 )
28 4 27 syl ( 𝜑𝑋𝐾 )
29 28 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑋𝐾 )
30 20 24 21 26 29 letrd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖𝐾 )
31 21 lep1d ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) )
32 20 21 22 30 31 letrd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) )
33 12 15 18 19 32 elfzd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) )
34 3 adantr ( ( 𝜑𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐺 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
35 simpr ( ( 𝜑𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) )
36 34 35 ffvelrnd ( ( 𝜑𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
37 36 adantlr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
38 33 37 mpdan ( ( 𝜑𝑖 ∈ ( 1 ... 𝑋 ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
39 11 38 fsumnn0cl ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ∈ ℕ0 )
40 39 nn0red ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ∈ ℝ )
41 elfznn ( 𝑌 ∈ ( 1 ... 𝐾 ) → 𝑌 ∈ ℕ )
42 5 41 syl ( 𝜑𝑌 ∈ ℕ )
43 42 nnred ( 𝜑𝑌 ∈ ℝ )
44 fzfid ( 𝜑 → ( ( 𝑋 + 1 ) ... 𝑌 ) ∈ Fin )
45 1zzd ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ∈ ℤ )
46 13 adantr ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝐾 ∈ ℤ )
47 46 peano2zd ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℤ )
48 elfzelz ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) → 𝑖 ∈ ℤ )
49 48 adantl ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ∈ ℤ )
50 1red ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ∈ ℝ )
51 10 adantr ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑋 ∈ ℝ )
52 51 50 readdcld ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝑋 + 1 ) ∈ ℝ )
53 49 zred ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ∈ ℝ )
54 1red ( 𝜑 → 1 ∈ ℝ )
55 10 54 readdcld ( 𝜑 → ( 𝑋 + 1 ) ∈ ℝ )
56 9 nnge1d ( 𝜑 → 1 ≤ 𝑋 )
57 10 ltp1d ( 𝜑𝑋 < ( 𝑋 + 1 ) )
58 10 55 57 ltled ( 𝜑𝑋 ≤ ( 𝑋 + 1 ) )
59 54 10 55 56 58 letrd ( 𝜑 → 1 ≤ ( 𝑋 + 1 ) )
60 59 adantr ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ≤ ( 𝑋 + 1 ) )
61 elfzle1 ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) → ( 𝑋 + 1 ) ≤ 𝑖 )
62 61 adantl ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝑋 + 1 ) ≤ 𝑖 )
63 50 52 53 60 62 letrd ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 1 ≤ 𝑖 )
64 43 adantr ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑌 ∈ ℝ )
65 47 zred ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℝ )
66 elfzle2 ( 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) → 𝑖𝑌 )
67 66 adantl ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖𝑌 )
68 46 zred ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝐾 ∈ ℝ )
69 elfzle2 ( 𝑌 ∈ ( 1 ... 𝐾 ) → 𝑌𝐾 )
70 5 69 syl ( 𝜑𝑌𝐾 )
71 70 adantr ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑌𝐾 )
72 68 lep1d ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) )
73 64 68 65 71 72 letrd ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑌 ≤ ( 𝐾 + 1 ) )
74 53 64 65 67 73 letrd ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) )
75 45 47 49 63 74 elfzd ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) )
76 36 adantlr ( ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
77 75 76 mpdan ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
78 77 nn0red ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → ( 𝐺𝑖 ) ∈ ℝ )
79 44 78 fsumrecl ( 𝜑 → Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ∈ ℝ )
80 40 79 readdcld ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) ∈ ℝ )
81 77 nn0ge0d ( ( 𝜑𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ) → 0 ≤ ( 𝐺𝑖 ) )
82 44 78 81 fsumge0 ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) )
83 40 79 addge01d ( 𝜑 → ( 0 ≤ Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ↔ Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) ) )
84 82 83 mpbid ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) )
85 10 40 43 80 6 84 ltleaddd ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ) < ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) ) )
86 7 a1i ( 𝜑𝐹 = ( 𝑥 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) ) ) )
87 simpr ( ( 𝜑𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
88 87 oveq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 1 ... 𝑥 ) = ( 1 ... 𝑋 ) )
89 88 sumeq1d ( ( 𝜑𝑥 = 𝑋 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) )
90 87 89 oveq12d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ) )
91 9 nnnn0d ( 𝜑𝑋 ∈ ℕ0 )
92 91 39 nn0addcld ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ) ∈ ℕ0 )
93 86 90 4 92 fvmptd ( 𝜑 → ( 𝐹𝑋 ) = ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ) )
94 93 eqcomd ( 𝜑 → ( 𝑋 + Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) ) = ( 𝐹𝑋 ) )
95 simpr ( ( 𝜑𝑥 = 𝑌 ) → 𝑥 = 𝑌 )
96 95 oveq2d ( ( 𝜑𝑥 = 𝑌 ) → ( 1 ... 𝑥 ) = ( 1 ... 𝑌 ) )
97 96 sumeq1d ( ( 𝜑𝑥 = 𝑌 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) )
98 95 97 oveq12d ( ( 𝜑𝑥 = 𝑌 ) → ( 𝑥 + Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( 𝐺𝑖 ) ) = ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) ) )
99 42 nnnn0d ( 𝜑𝑌 ∈ ℕ0 )
100 fzfid ( 𝜑 → ( 1 ... 𝑌 ) ∈ Fin )
101 1zzd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 1 ∈ ℤ )
102 13 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝐾 ∈ ℤ )
103 102 peano2zd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℤ )
104 elfzelz ( 𝑖 ∈ ( 1 ... 𝑌 ) → 𝑖 ∈ ℤ )
105 104 adantl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ∈ ℤ )
106 elfzle1 ( 𝑖 ∈ ( 1 ... 𝑌 ) → 1 ≤ 𝑖 )
107 106 adantl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 1 ≤ 𝑖 )
108 105 zred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ∈ ℝ )
109 43 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑌 ∈ ℝ )
110 103 zred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐾 + 1 ) ∈ ℝ )
111 elfzle2 ( 𝑖 ∈ ( 1 ... 𝑌 ) → 𝑖𝑌 )
112 111 adantl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖𝑌 )
113 102 zred ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝐾 ∈ ℝ )
114 70 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑌𝐾 )
115 113 lep1d ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝐾 ≤ ( 𝐾 + 1 ) )
116 109 113 110 114 115 letrd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑌 ≤ ( 𝐾 + 1 ) )
117 108 109 110 112 116 letrd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) )
118 101 103 105 107 117 elfzd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) )
119 36 adantlr ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
120 118 119 mpdan ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐺𝑖 ) ∈ ℕ0 )
121 100 120 fsumnn0cl ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) ∈ ℕ0 )
122 99 121 nn0addcld ( 𝜑 → ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) ) ∈ ℕ0 )
123 86 98 5 122 fvmptd ( 𝜑 → ( 𝐹𝑌 ) = ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) ) )
124 fzdisj ( 𝑋 < ( 𝑋 + 1 ) → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... 𝑌 ) ) = ∅ )
125 57 124 syl ( 𝜑 → ( ( 1 ... 𝑋 ) ∩ ( ( 𝑋 + 1 ) ... 𝑌 ) ) = ∅ )
126 1zzd ( 𝜑 → 1 ∈ ℤ )
127 99 nn0zd ( 𝜑𝑌 ∈ ℤ )
128 91 nn0zd ( 𝜑𝑋 ∈ ℤ )
129 10 43 6 ltled ( 𝜑𝑋𝑌 )
130 126 127 128 56 129 elfzd ( 𝜑𝑋 ∈ ( 1 ... 𝑌 ) )
131 fzsplit ( 𝑋 ∈ ( 1 ... 𝑌 ) → ( 1 ... 𝑌 ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... 𝑌 ) ) )
132 130 131 syl ( 𝜑 → ( 1 ... 𝑌 ) = ( ( 1 ... 𝑋 ) ∪ ( ( 𝑋 + 1 ) ... 𝑌 ) ) )
133 120 nn0red ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐺𝑖 ) ∈ ℝ )
134 133 recnd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑌 ) ) → ( 𝐺𝑖 ) ∈ ℂ )
135 125 132 100 134 fsumsplit ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) )
136 135 oveq2d ( 𝜑 → ( 𝑌 + Σ 𝑖 ∈ ( 1 ... 𝑌 ) ( 𝐺𝑖 ) ) = ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) ) )
137 123 136 eqtrd ( 𝜑 → ( 𝐹𝑌 ) = ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) ) )
138 137 eqcomd ( 𝜑 → ( 𝑌 + ( Σ 𝑖 ∈ ( 1 ... 𝑋 ) ( 𝐺𝑖 ) + Σ 𝑖 ∈ ( ( 𝑋 + 1 ) ... 𝑌 ) ( 𝐺𝑖 ) ) ) = ( 𝐹𝑌 ) )
139 85 94 138 3brtr3d ( 𝜑 → ( 𝐹𝑋 ) < ( 𝐹𝑌 ) )