Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones6.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones6.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones6.3 |
|- ( ph -> G : ( 1 ... ( K + 1 ) ) --> NN0 ) |
4 |
|
sticksstones6.4 |
|- ( ph -> X e. ( 1 ... K ) ) |
5 |
|
sticksstones6.5 |
|- ( ph -> Y e. ( 1 ... K ) ) |
6 |
|
sticksstones6.6 |
|- ( ph -> X < Y ) |
7 |
|
sticksstones6.7 |
|- F = ( x e. ( 1 ... K ) |-> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) ) |
8 |
|
elfznn |
|- ( X e. ( 1 ... K ) -> X e. NN ) |
9 |
4 8
|
syl |
|- ( ph -> X e. NN ) |
10 |
9
|
nnred |
|- ( ph -> X e. RR ) |
11 |
|
fzfid |
|- ( ph -> ( 1 ... X ) e. Fin ) |
12 |
|
1zzd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> 1 e. ZZ ) |
13 |
2
|
nn0zd |
|- ( ph -> K e. ZZ ) |
14 |
13
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> K e. ZZ ) |
15 |
14
|
peano2zd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> ( K + 1 ) e. ZZ ) |
16 |
|
elfznn |
|- ( i e. ( 1 ... X ) -> i e. NN ) |
17 |
16
|
adantl |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. NN ) |
18 |
17
|
nnzd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. ZZ ) |
19 |
17
|
nnge1d |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> 1 <_ i ) |
20 |
17
|
nnred |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. RR ) |
21 |
14
|
zred |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> K e. RR ) |
22 |
15
|
zred |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> ( K + 1 ) e. RR ) |
23 |
9
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> X e. NN ) |
24 |
23
|
nnred |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> X e. RR ) |
25 |
|
elfzle2 |
|- ( i e. ( 1 ... X ) -> i <_ X ) |
26 |
25
|
adantl |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i <_ X ) |
27 |
|
elfzle2 |
|- ( X e. ( 1 ... K ) -> X <_ K ) |
28 |
4 27
|
syl |
|- ( ph -> X <_ K ) |
29 |
28
|
adantr |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> X <_ K ) |
30 |
20 24 21 26 29
|
letrd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i <_ K ) |
31 |
21
|
lep1d |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> K <_ ( K + 1 ) ) |
32 |
20 21 22 30 31
|
letrd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i <_ ( K + 1 ) ) |
33 |
12 15 18 19 32
|
elfzd |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
34 |
3
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( K + 1 ) ) ) -> G : ( 1 ... ( K + 1 ) ) --> NN0 ) |
35 |
|
simpr |
|- ( ( ph /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
36 |
34 35
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
37 |
36
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... X ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
38 |
33 37
|
mpdan |
|- ( ( ph /\ i e. ( 1 ... X ) ) -> ( G ` i ) e. NN0 ) |
39 |
11 38
|
fsumnn0cl |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) e. NN0 ) |
40 |
39
|
nn0red |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) e. RR ) |
41 |
|
elfznn |
|- ( Y e. ( 1 ... K ) -> Y e. NN ) |
42 |
5 41
|
syl |
|- ( ph -> Y e. NN ) |
43 |
42
|
nnred |
|- ( ph -> Y e. RR ) |
44 |
|
fzfid |
|- ( ph -> ( ( X + 1 ) ... Y ) e. Fin ) |
45 |
|
1zzd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> 1 e. ZZ ) |
46 |
13
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> K e. ZZ ) |
47 |
46
|
peano2zd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> ( K + 1 ) e. ZZ ) |
48 |
|
elfzelz |
|- ( i e. ( ( X + 1 ) ... Y ) -> i e. ZZ ) |
49 |
48
|
adantl |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> i e. ZZ ) |
50 |
|
1red |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> 1 e. RR ) |
51 |
10
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> X e. RR ) |
52 |
51 50
|
readdcld |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> ( X + 1 ) e. RR ) |
53 |
49
|
zred |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> i e. RR ) |
54 |
|
1red |
|- ( ph -> 1 e. RR ) |
55 |
10 54
|
readdcld |
|- ( ph -> ( X + 1 ) e. RR ) |
56 |
9
|
nnge1d |
|- ( ph -> 1 <_ X ) |
57 |
10
|
ltp1d |
|- ( ph -> X < ( X + 1 ) ) |
58 |
10 55 57
|
ltled |
|- ( ph -> X <_ ( X + 1 ) ) |
59 |
54 10 55 56 58
|
letrd |
|- ( ph -> 1 <_ ( X + 1 ) ) |
60 |
59
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> 1 <_ ( X + 1 ) ) |
61 |
|
elfzle1 |
|- ( i e. ( ( X + 1 ) ... Y ) -> ( X + 1 ) <_ i ) |
62 |
61
|
adantl |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> ( X + 1 ) <_ i ) |
63 |
50 52 53 60 62
|
letrd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> 1 <_ i ) |
64 |
43
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> Y e. RR ) |
65 |
47
|
zred |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> ( K + 1 ) e. RR ) |
66 |
|
elfzle2 |
|- ( i e. ( ( X + 1 ) ... Y ) -> i <_ Y ) |
67 |
66
|
adantl |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> i <_ Y ) |
68 |
46
|
zred |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> K e. RR ) |
69 |
|
elfzle2 |
|- ( Y e. ( 1 ... K ) -> Y <_ K ) |
70 |
5 69
|
syl |
|- ( ph -> Y <_ K ) |
71 |
70
|
adantr |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> Y <_ K ) |
72 |
68
|
lep1d |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> K <_ ( K + 1 ) ) |
73 |
64 68 65 71 72
|
letrd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> Y <_ ( K + 1 ) ) |
74 |
53 64 65 67 73
|
letrd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> i <_ ( K + 1 ) ) |
75 |
45 47 49 63 74
|
elfzd |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
76 |
36
|
adantlr |
|- ( ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
77 |
75 76
|
mpdan |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> ( G ` i ) e. NN0 ) |
78 |
77
|
nn0red |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> ( G ` i ) e. RR ) |
79 |
44 78
|
fsumrecl |
|- ( ph -> sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) e. RR ) |
80 |
40 79
|
readdcld |
|- ( ph -> ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) e. RR ) |
81 |
77
|
nn0ge0d |
|- ( ( ph /\ i e. ( ( X + 1 ) ... Y ) ) -> 0 <_ ( G ` i ) ) |
82 |
44 78 81
|
fsumge0 |
|- ( ph -> 0 <_ sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) |
83 |
40 79
|
addge01d |
|- ( ph -> ( 0 <_ sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) <-> sum_ i e. ( 1 ... X ) ( G ` i ) <_ ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) ) |
84 |
82 83
|
mpbid |
|- ( ph -> sum_ i e. ( 1 ... X ) ( G ` i ) <_ ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) |
85 |
10 40 43 80 6 84
|
ltleaddd |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) < ( Y + ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) ) |
86 |
7
|
a1i |
|- ( ph -> F = ( x e. ( 1 ... K ) |-> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) ) ) |
87 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
88 |
87
|
oveq2d |
|- ( ( ph /\ x = X ) -> ( 1 ... x ) = ( 1 ... X ) ) |
89 |
88
|
sumeq1d |
|- ( ( ph /\ x = X ) -> sum_ i e. ( 1 ... x ) ( G ` i ) = sum_ i e. ( 1 ... X ) ( G ` i ) ) |
90 |
87 89
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) = ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) ) |
91 |
9
|
nnnn0d |
|- ( ph -> X e. NN0 ) |
92 |
91 39
|
nn0addcld |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) e. NN0 ) |
93 |
86 90 4 92
|
fvmptd |
|- ( ph -> ( F ` X ) = ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) ) |
94 |
93
|
eqcomd |
|- ( ph -> ( X + sum_ i e. ( 1 ... X ) ( G ` i ) ) = ( F ` X ) ) |
95 |
|
simpr |
|- ( ( ph /\ x = Y ) -> x = Y ) |
96 |
95
|
oveq2d |
|- ( ( ph /\ x = Y ) -> ( 1 ... x ) = ( 1 ... Y ) ) |
97 |
96
|
sumeq1d |
|- ( ( ph /\ x = Y ) -> sum_ i e. ( 1 ... x ) ( G ` i ) = sum_ i e. ( 1 ... Y ) ( G ` i ) ) |
98 |
95 97
|
oveq12d |
|- ( ( ph /\ x = Y ) -> ( x + sum_ i e. ( 1 ... x ) ( G ` i ) ) = ( Y + sum_ i e. ( 1 ... Y ) ( G ` i ) ) ) |
99 |
42
|
nnnn0d |
|- ( ph -> Y e. NN0 ) |
100 |
|
fzfid |
|- ( ph -> ( 1 ... Y ) e. Fin ) |
101 |
|
1zzd |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> 1 e. ZZ ) |
102 |
13
|
adantr |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> K e. ZZ ) |
103 |
102
|
peano2zd |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> ( K + 1 ) e. ZZ ) |
104 |
|
elfzelz |
|- ( i e. ( 1 ... Y ) -> i e. ZZ ) |
105 |
104
|
adantl |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> i e. ZZ ) |
106 |
|
elfzle1 |
|- ( i e. ( 1 ... Y ) -> 1 <_ i ) |
107 |
106
|
adantl |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> 1 <_ i ) |
108 |
105
|
zred |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> i e. RR ) |
109 |
43
|
adantr |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> Y e. RR ) |
110 |
103
|
zred |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> ( K + 1 ) e. RR ) |
111 |
|
elfzle2 |
|- ( i e. ( 1 ... Y ) -> i <_ Y ) |
112 |
111
|
adantl |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> i <_ Y ) |
113 |
102
|
zred |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> K e. RR ) |
114 |
70
|
adantr |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> Y <_ K ) |
115 |
113
|
lep1d |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> K <_ ( K + 1 ) ) |
116 |
109 113 110 114 115
|
letrd |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> Y <_ ( K + 1 ) ) |
117 |
108 109 110 112 116
|
letrd |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> i <_ ( K + 1 ) ) |
118 |
101 103 105 107 117
|
elfzd |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
119 |
36
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... Y ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( G ` i ) e. NN0 ) |
120 |
118 119
|
mpdan |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> ( G ` i ) e. NN0 ) |
121 |
100 120
|
fsumnn0cl |
|- ( ph -> sum_ i e. ( 1 ... Y ) ( G ` i ) e. NN0 ) |
122 |
99 121
|
nn0addcld |
|- ( ph -> ( Y + sum_ i e. ( 1 ... Y ) ( G ` i ) ) e. NN0 ) |
123 |
86 98 5 122
|
fvmptd |
|- ( ph -> ( F ` Y ) = ( Y + sum_ i e. ( 1 ... Y ) ( G ` i ) ) ) |
124 |
|
fzdisj |
|- ( X < ( X + 1 ) -> ( ( 1 ... X ) i^i ( ( X + 1 ) ... Y ) ) = (/) ) |
125 |
57 124
|
syl |
|- ( ph -> ( ( 1 ... X ) i^i ( ( X + 1 ) ... Y ) ) = (/) ) |
126 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
127 |
99
|
nn0zd |
|- ( ph -> Y e. ZZ ) |
128 |
91
|
nn0zd |
|- ( ph -> X e. ZZ ) |
129 |
10 43 6
|
ltled |
|- ( ph -> X <_ Y ) |
130 |
126 127 128 56 129
|
elfzd |
|- ( ph -> X e. ( 1 ... Y ) ) |
131 |
|
fzsplit |
|- ( X e. ( 1 ... Y ) -> ( 1 ... Y ) = ( ( 1 ... X ) u. ( ( X + 1 ) ... Y ) ) ) |
132 |
130 131
|
syl |
|- ( ph -> ( 1 ... Y ) = ( ( 1 ... X ) u. ( ( X + 1 ) ... Y ) ) ) |
133 |
120
|
nn0red |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> ( G ` i ) e. RR ) |
134 |
133
|
recnd |
|- ( ( ph /\ i e. ( 1 ... Y ) ) -> ( G ` i ) e. CC ) |
135 |
125 132 100 134
|
fsumsplit |
|- ( ph -> sum_ i e. ( 1 ... Y ) ( G ` i ) = ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) |
136 |
135
|
oveq2d |
|- ( ph -> ( Y + sum_ i e. ( 1 ... Y ) ( G ` i ) ) = ( Y + ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) ) |
137 |
123 136
|
eqtrd |
|- ( ph -> ( F ` Y ) = ( Y + ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) ) |
138 |
137
|
eqcomd |
|- ( ph -> ( Y + ( sum_ i e. ( 1 ... X ) ( G ` i ) + sum_ i e. ( ( X + 1 ) ... Y ) ( G ` i ) ) ) = ( F ` Y ) ) |
139 |
85 94 138
|
3brtr3d |
|- ( ph -> ( F ` X ) < ( F ` Y ) ) |