Metamath Proof Explorer


Theorem sticksstones6

Description: Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024)

Ref Expression
Hypotheses sticksstones6.1 φN0
sticksstones6.2 φK0
sticksstones6.3 φG:1K+10
sticksstones6.4 φX1K
sticksstones6.5 φY1K
sticksstones6.6 φX<Y
sticksstones6.7 F=x1Kx+i=1xGi
Assertion sticksstones6 φFX<FY

Proof

Step Hyp Ref Expression
1 sticksstones6.1 φN0
2 sticksstones6.2 φK0
3 sticksstones6.3 φG:1K+10
4 sticksstones6.4 φX1K
5 sticksstones6.5 φY1K
6 sticksstones6.6 φX<Y
7 sticksstones6.7 F=x1Kx+i=1xGi
8 elfznn X1KX
9 4 8 syl φX
10 9 nnred φX
11 fzfid φ1XFin
12 1zzd φi1X1
13 2 nn0zd φK
14 13 adantr φi1XK
15 14 peano2zd φi1XK+1
16 elfznn i1Xi
17 16 adantl φi1Xi
18 17 nnzd φi1Xi
19 17 nnge1d φi1X1i
20 17 nnred φi1Xi
21 14 zred φi1XK
22 15 zred φi1XK+1
23 9 adantr φi1XX
24 23 nnred φi1XX
25 elfzle2 i1XiX
26 25 adantl φi1XiX
27 elfzle2 X1KXK
28 4 27 syl φXK
29 28 adantr φi1XXK
30 20 24 21 26 29 letrd φi1XiK
31 21 lep1d φi1XKK+1
32 20 21 22 30 31 letrd φi1XiK+1
33 12 15 18 19 32 elfzd φi1Xi1K+1
34 3 adantr φi1K+1G:1K+10
35 simpr φi1K+1i1K+1
36 34 35 ffvelcdmd φi1K+1Gi0
37 36 adantlr φi1Xi1K+1Gi0
38 33 37 mpdan φi1XGi0
39 11 38 fsumnn0cl φi=1XGi0
40 39 nn0red φi=1XGi
41 elfznn Y1KY
42 5 41 syl φY
43 42 nnred φY
44 fzfid φX+1YFin
45 1zzd φiX+1Y1
46 13 adantr φiX+1YK
47 46 peano2zd φiX+1YK+1
48 elfzelz iX+1Yi
49 48 adantl φiX+1Yi
50 1red φiX+1Y1
51 10 adantr φiX+1YX
52 51 50 readdcld φiX+1YX+1
53 49 zred φiX+1Yi
54 1red φ1
55 10 54 readdcld φX+1
56 9 nnge1d φ1X
57 10 ltp1d φX<X+1
58 10 55 57 ltled φXX+1
59 54 10 55 56 58 letrd φ1X+1
60 59 adantr φiX+1Y1X+1
61 elfzle1 iX+1YX+1i
62 61 adantl φiX+1YX+1i
63 50 52 53 60 62 letrd φiX+1Y1i
64 43 adantr φiX+1YY
65 47 zred φiX+1YK+1
66 elfzle2 iX+1YiY
67 66 adantl φiX+1YiY
68 46 zred φiX+1YK
69 elfzle2 Y1KYK
70 5 69 syl φYK
71 70 adantr φiX+1YYK
72 68 lep1d φiX+1YKK+1
73 64 68 65 71 72 letrd φiX+1YYK+1
74 53 64 65 67 73 letrd φiX+1YiK+1
75 45 47 49 63 74 elfzd φiX+1Yi1K+1
76 36 adantlr φiX+1Yi1K+1Gi0
77 75 76 mpdan φiX+1YGi0
78 77 nn0red φiX+1YGi
79 44 78 fsumrecl φi=X+1YGi
80 40 79 readdcld φi=1XGi+i=X+1YGi
81 77 nn0ge0d φiX+1Y0Gi
82 44 78 81 fsumge0 φ0i=X+1YGi
83 40 79 addge01d φ0i=X+1YGii=1XGii=1XGi+i=X+1YGi
84 82 83 mpbid φi=1XGii=1XGi+i=X+1YGi
85 10 40 43 80 6 84 ltleaddd φX+i=1XGi<Y+i=1XGi+i=X+1YGi
86 7 a1i φF=x1Kx+i=1xGi
87 simpr φx=Xx=X
88 87 oveq2d φx=X1x=1X
89 88 sumeq1d φx=Xi=1xGi=i=1XGi
90 87 89 oveq12d φx=Xx+i=1xGi=X+i=1XGi
91 9 nnnn0d φX0
92 91 39 nn0addcld φX+i=1XGi0
93 86 90 4 92 fvmptd φFX=X+i=1XGi
94 93 eqcomd φX+i=1XGi=FX
95 simpr φx=Yx=Y
96 95 oveq2d φx=Y1x=1Y
97 96 sumeq1d φx=Yi=1xGi=i=1YGi
98 95 97 oveq12d φx=Yx+i=1xGi=Y+i=1YGi
99 42 nnnn0d φY0
100 fzfid φ1YFin
101 1zzd φi1Y1
102 13 adantr φi1YK
103 102 peano2zd φi1YK+1
104 elfzelz i1Yi
105 104 adantl φi1Yi
106 elfzle1 i1Y1i
107 106 adantl φi1Y1i
108 105 zred φi1Yi
109 43 adantr φi1YY
110 103 zred φi1YK+1
111 elfzle2 i1YiY
112 111 adantl φi1YiY
113 102 zred φi1YK
114 70 adantr φi1YYK
115 113 lep1d φi1YKK+1
116 109 113 110 114 115 letrd φi1YYK+1
117 108 109 110 112 116 letrd φi1YiK+1
118 101 103 105 107 117 elfzd φi1Yi1K+1
119 36 adantlr φi1Yi1K+1Gi0
120 118 119 mpdan φi1YGi0
121 100 120 fsumnn0cl φi=1YGi0
122 99 121 nn0addcld φY+i=1YGi0
123 86 98 5 122 fvmptd φFY=Y+i=1YGi
124 fzdisj X<X+11XX+1Y=
125 57 124 syl φ1XX+1Y=
126 1zzd φ1
127 99 nn0zd φY
128 91 nn0zd φX
129 10 43 6 ltled φXY
130 126 127 128 56 129 elfzd φX1Y
131 fzsplit X1Y1Y=1XX+1Y
132 130 131 syl φ1Y=1XX+1Y
133 120 nn0red φi1YGi
134 133 recnd φi1YGi
135 125 132 100 134 fsumsplit φi=1YGi=i=1XGi+i=X+1YGi
136 135 oveq2d φY+i=1YGi=Y+i=1XGi+i=X+1YGi
137 123 136 eqtrd φFY=Y+i=1XGi+i=X+1YGi
138 137 eqcomd φY+i=1XGi+i=X+1YGi=FY
139 85 94 138 3brtr3d φFX<FY