Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones6.1 |
|
2 |
|
sticksstones6.2 |
|
3 |
|
sticksstones6.3 |
|
4 |
|
sticksstones6.4 |
|
5 |
|
sticksstones6.5 |
|
6 |
|
sticksstones6.6 |
|
7 |
|
sticksstones6.7 |
|
8 |
|
elfznn |
|
9 |
4 8
|
syl |
|
10 |
9
|
nnred |
|
11 |
|
fzfid |
|
12 |
|
1zzd |
|
13 |
2
|
nn0zd |
|
14 |
13
|
adantr |
|
15 |
14
|
peano2zd |
|
16 |
|
elfznn |
|
17 |
16
|
adantl |
|
18 |
17
|
nnzd |
|
19 |
17
|
nnge1d |
|
20 |
17
|
nnred |
|
21 |
14
|
zred |
|
22 |
15
|
zred |
|
23 |
9
|
adantr |
|
24 |
23
|
nnred |
|
25 |
|
elfzle2 |
|
26 |
25
|
adantl |
|
27 |
|
elfzle2 |
|
28 |
4 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
20 24 21 26 29
|
letrd |
|
31 |
21
|
lep1d |
|
32 |
20 21 22 30 31
|
letrd |
|
33 |
12 15 18 19 32
|
elfzd |
|
34 |
3
|
adantr |
|
35 |
|
simpr |
|
36 |
34 35
|
ffvelrnd |
|
37 |
36
|
adantlr |
|
38 |
33 37
|
mpdan |
|
39 |
11 38
|
fsumnn0cl |
|
40 |
39
|
nn0red |
|
41 |
|
elfznn |
|
42 |
5 41
|
syl |
|
43 |
42
|
nnred |
|
44 |
|
fzfid |
|
45 |
|
1zzd |
|
46 |
13
|
adantr |
|
47 |
46
|
peano2zd |
|
48 |
|
elfzelz |
|
49 |
48
|
adantl |
|
50 |
|
1red |
|
51 |
10
|
adantr |
|
52 |
51 50
|
readdcld |
|
53 |
49
|
zred |
|
54 |
|
1red |
|
55 |
10 54
|
readdcld |
|
56 |
9
|
nnge1d |
|
57 |
10
|
ltp1d |
|
58 |
10 55 57
|
ltled |
|
59 |
54 10 55 56 58
|
letrd |
|
60 |
59
|
adantr |
|
61 |
|
elfzle1 |
|
62 |
61
|
adantl |
|
63 |
50 52 53 60 62
|
letrd |
|
64 |
43
|
adantr |
|
65 |
47
|
zred |
|
66 |
|
elfzle2 |
|
67 |
66
|
adantl |
|
68 |
46
|
zred |
|
69 |
|
elfzle2 |
|
70 |
5 69
|
syl |
|
71 |
70
|
adantr |
|
72 |
68
|
lep1d |
|
73 |
64 68 65 71 72
|
letrd |
|
74 |
53 64 65 67 73
|
letrd |
|
75 |
45 47 49 63 74
|
elfzd |
|
76 |
36
|
adantlr |
|
77 |
75 76
|
mpdan |
|
78 |
77
|
nn0red |
|
79 |
44 78
|
fsumrecl |
|
80 |
40 79
|
readdcld |
|
81 |
77
|
nn0ge0d |
|
82 |
44 78 81
|
fsumge0 |
|
83 |
40 79
|
addge01d |
|
84 |
82 83
|
mpbid |
|
85 |
10 40 43 80 6 84
|
ltleaddd |
|
86 |
7
|
a1i |
|
87 |
|
simpr |
|
88 |
87
|
oveq2d |
|
89 |
88
|
sumeq1d |
|
90 |
87 89
|
oveq12d |
|
91 |
9
|
nnnn0d |
|
92 |
91 39
|
nn0addcld |
|
93 |
86 90 4 92
|
fvmptd |
|
94 |
93
|
eqcomd |
|
95 |
|
simpr |
|
96 |
95
|
oveq2d |
|
97 |
96
|
sumeq1d |
|
98 |
95 97
|
oveq12d |
|
99 |
42
|
nnnn0d |
|
100 |
|
fzfid |
|
101 |
|
1zzd |
|
102 |
13
|
adantr |
|
103 |
102
|
peano2zd |
|
104 |
|
elfzelz |
|
105 |
104
|
adantl |
|
106 |
|
elfzle1 |
|
107 |
106
|
adantl |
|
108 |
105
|
zred |
|
109 |
43
|
adantr |
|
110 |
103
|
zred |
|
111 |
|
elfzle2 |
|
112 |
111
|
adantl |
|
113 |
102
|
zred |
|
114 |
70
|
adantr |
|
115 |
113
|
lep1d |
|
116 |
109 113 110 114 115
|
letrd |
|
117 |
108 109 110 112 116
|
letrd |
|
118 |
101 103 105 107 117
|
elfzd |
|
119 |
36
|
adantlr |
|
120 |
118 119
|
mpdan |
|
121 |
100 120
|
fsumnn0cl |
|
122 |
99 121
|
nn0addcld |
|
123 |
86 98 5 122
|
fvmptd |
|
124 |
|
fzdisj |
|
125 |
57 124
|
syl |
|
126 |
|
1zzd |
|
127 |
99
|
nn0zd |
|
128 |
91
|
nn0zd |
|
129 |
10 43 6
|
ltled |
|
130 |
126 127 128 56 129
|
elfzd |
|
131 |
|
fzsplit |
|
132 |
130 131
|
syl |
|
133 |
120
|
nn0red |
|
134 |
133
|
recnd |
|
135 |
125 132 100 134
|
fsumsplit |
|
136 |
135
|
oveq2d |
|
137 |
123 136
|
eqtrd |
|
138 |
137
|
eqcomd |
|
139 |
85 94 138
|
3brtr3d |
|