Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones9.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones9.2 |
|- ( ph -> K = 0 ) |
3 |
|
sticksstones9.3 |
|- G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
4 |
|
sticksstones9.4 |
|- A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } |
5 |
|
sticksstones9.5 |
|- B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
6 |
2
|
iftrued |
|- ( ph -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = { <. 1 , N >. } ) |
7 |
6
|
adantr |
|- ( ( ph /\ b e. B ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = { <. 1 , N >. } ) |
8 |
|
eqid |
|- { <. 1 , N >. } = { <. 1 , N >. } |
9 |
|
1nn |
|- 1 e. NN |
10 |
9
|
a1i |
|- ( ph -> 1 e. NN ) |
11 |
|
fsng |
|- ( ( 1 e. NN /\ N e. NN0 ) -> ( { <. 1 , N >. } : { 1 } --> { N } <-> { <. 1 , N >. } = { <. 1 , N >. } ) ) |
12 |
10 1 11
|
syl2anc |
|- ( ph -> ( { <. 1 , N >. } : { 1 } --> { N } <-> { <. 1 , N >. } = { <. 1 , N >. } ) ) |
13 |
8 12
|
mpbiri |
|- ( ph -> { <. 1 , N >. } : { 1 } --> { N } ) |
14 |
1
|
snssd |
|- ( ph -> { N } C_ NN0 ) |
15 |
13 14
|
jca |
|- ( ph -> ( { <. 1 , N >. } : { 1 } --> { N } /\ { N } C_ NN0 ) ) |
16 |
|
fss |
|- ( ( { <. 1 , N >. } : { 1 } --> { N } /\ { N } C_ NN0 ) -> { <. 1 , N >. } : { 1 } --> NN0 ) |
17 |
15 16
|
syl |
|- ( ph -> { <. 1 , N >. } : { 1 } --> NN0 ) |
18 |
2
|
oveq1d |
|- ( ph -> ( K + 1 ) = ( 0 + 1 ) ) |
19 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
20 |
18 19
|
eqtrdi |
|- ( ph -> ( K + 1 ) = 1 ) |
21 |
20
|
oveq2d |
|- ( ph -> ( 1 ... ( K + 1 ) ) = ( 1 ... 1 ) ) |
22 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
23 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
24 |
22 23
|
syl |
|- ( ph -> ( 1 ... 1 ) = { 1 } ) |
25 |
21 24
|
eqtrd |
|- ( ph -> ( 1 ... ( K + 1 ) ) = { 1 } ) |
26 |
25
|
eqcomd |
|- ( ph -> { 1 } = ( 1 ... ( K + 1 ) ) ) |
27 |
26
|
feq2d |
|- ( ph -> ( { <. 1 , N >. } : { 1 } --> NN0 <-> { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 ) ) |
28 |
17 27
|
mpbid |
|- ( ph -> { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 ) |
29 |
25
|
sumeq1d |
|- ( ph -> sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = sum_ i e. { 1 } ( { <. 1 , N >. } ` i ) ) |
30 |
|
fvsng |
|- ( ( 1 e. NN /\ N e. NN0 ) -> ( { <. 1 , N >. } ` 1 ) = N ) |
31 |
10 1 30
|
syl2anc |
|- ( ph -> ( { <. 1 , N >. } ` 1 ) = N ) |
32 |
1
|
nn0cnd |
|- ( ph -> N e. CC ) |
33 |
31 32
|
eqeltrd |
|- ( ph -> ( { <. 1 , N >. } ` 1 ) e. CC ) |
34 |
10 33
|
jca |
|- ( ph -> ( 1 e. NN /\ ( { <. 1 , N >. } ` 1 ) e. CC ) ) |
35 |
|
fveq2 |
|- ( i = 1 -> ( { <. 1 , N >. } ` i ) = ( { <. 1 , N >. } ` 1 ) ) |
36 |
35
|
sumsn |
|- ( ( 1 e. NN /\ ( { <. 1 , N >. } ` 1 ) e. CC ) -> sum_ i e. { 1 } ( { <. 1 , N >. } ` i ) = ( { <. 1 , N >. } ` 1 ) ) |
37 |
34 36
|
syl |
|- ( ph -> sum_ i e. { 1 } ( { <. 1 , N >. } ` i ) = ( { <. 1 , N >. } ` 1 ) ) |
38 |
10 1
|
jca |
|- ( ph -> ( 1 e. NN /\ N e. NN0 ) ) |
39 |
38 30
|
syl |
|- ( ph -> ( { <. 1 , N >. } ` 1 ) = N ) |
40 |
37 39
|
eqtrd |
|- ( ph -> sum_ i e. { 1 } ( { <. 1 , N >. } ` i ) = N ) |
41 |
29 40
|
eqtrd |
|- ( ph -> sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) |
42 |
28 41
|
jca |
|- ( ph -> ( { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ b e. B ) -> ( { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) ) |
44 |
|
snex |
|- { <. 1 , N >. } e. _V |
45 |
|
feq1 |
|- ( g = { <. 1 , N >. } -> ( g : ( 1 ... ( K + 1 ) ) --> NN0 <-> { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 ) ) |
46 |
|
simpl |
|- ( ( g = { <. 1 , N >. } /\ i e. ( 1 ... ( K + 1 ) ) ) -> g = { <. 1 , N >. } ) |
47 |
46
|
fveq1d |
|- ( ( g = { <. 1 , N >. } /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( g ` i ) = ( { <. 1 , N >. } ` i ) ) |
48 |
47
|
sumeq2dv |
|- ( g = { <. 1 , N >. } -> sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) ) |
49 |
48
|
eqeq1d |
|- ( g = { <. 1 , N >. } -> ( sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N <-> sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) ) |
50 |
45 49
|
anbi12d |
|- ( g = { <. 1 , N >. } -> ( ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) <-> ( { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) ) ) |
51 |
50
|
elabg |
|- ( { <. 1 , N >. } e. _V -> ( { <. 1 , N >. } e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) ) ) |
52 |
44 51
|
ax-mp |
|- ( { <. 1 , N >. } e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( { <. 1 , N >. } : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( { <. 1 , N >. } ` i ) = N ) ) |
53 |
43 52
|
sylibr |
|- ( ( ph /\ b e. B ) -> { <. 1 , N >. } e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
54 |
4
|
a1i |
|- ( ( ph /\ b e. B ) -> A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
55 |
53 54
|
eleqtrrd |
|- ( ( ph /\ b e. B ) -> { <. 1 , N >. } e. A ) |
56 |
7 55
|
eqeltrd |
|- ( ( ph /\ b e. B ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) e. A ) |
57 |
56 3
|
fmptd |
|- ( ph -> G : B --> A ) |