Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones10.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones10.2 |
|- ( ph -> K e. NN ) |
3 |
|
sticksstones10.3 |
|- G = ( b e. B |-> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
4 |
|
sticksstones10.4 |
|- A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } |
5 |
|
sticksstones10.5 |
|- B = { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } |
6 |
2
|
nnne0d |
|- ( ph -> K =/= 0 ) |
7 |
6
|
adantr |
|- ( ( ph /\ b e. B ) -> K =/= 0 ) |
8 |
7
|
neneqd |
|- ( ( ph /\ b e. B ) -> -. K = 0 ) |
9 |
8
|
iffalsed |
|- ( ( ph /\ b e. B ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
10 |
9
|
eqcomd |
|- ( ( ph /\ b e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) = if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) ) |
11 |
|
eleq1 |
|- ( ( ( N + K ) - ( b ` K ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) -> ( ( ( N + K ) - ( b ` K ) ) e. NN0 <-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) ) |
12 |
|
eleq1 |
|- ( if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) = if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) -> ( if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) e. NN0 <-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) ) |
13 |
1
|
nn0zd |
|- ( ph -> N e. ZZ ) |
14 |
13
|
adantr |
|- ( ( ph /\ b e. B ) -> N e. ZZ ) |
15 |
2
|
nnzd |
|- ( ph -> K e. ZZ ) |
16 |
15
|
adantr |
|- ( ( ph /\ b e. B ) -> K e. ZZ ) |
17 |
14 16
|
zaddcld |
|- ( ( ph /\ b e. B ) -> ( N + K ) e. ZZ ) |
18 |
5
|
eleq2i |
|- ( b e. B <-> b e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } ) |
19 |
|
vex |
|- b e. _V |
20 |
|
feq1 |
|- ( f = b -> ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) <-> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) ) |
21 |
|
fveq1 |
|- ( f = b -> ( f ` x ) = ( b ` x ) ) |
22 |
|
fveq1 |
|- ( f = b -> ( f ` y ) = ( b ` y ) ) |
23 |
21 22
|
breq12d |
|- ( f = b -> ( ( f ` x ) < ( f ` y ) <-> ( b ` x ) < ( b ` y ) ) ) |
24 |
23
|
imbi2d |
|- ( f = b -> ( ( x < y -> ( f ` x ) < ( f ` y ) ) <-> ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) |
25 |
24
|
2ralbidv |
|- ( f = b -> ( A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) <-> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) |
26 |
20 25
|
anbi12d |
|- ( f = b -> ( ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) <-> ( b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) ) |
27 |
19 26
|
elab |
|- ( b e. { f | ( f : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( f ` x ) < ( f ` y ) ) ) } <-> ( b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) |
28 |
18 27
|
bitri |
|- ( b e. B <-> ( b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) |
29 |
28
|
biimpi |
|- ( b e. B -> ( b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ b e. B ) -> ( b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) ) |
31 |
30
|
simpld |
|- ( ( ph /\ b e. B ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
32 |
|
1zzd |
|- ( ( ph /\ b e. B ) -> 1 e. ZZ ) |
33 |
2
|
nnge1d |
|- ( ph -> 1 <_ K ) |
34 |
33
|
adantr |
|- ( ( ph /\ b e. B ) -> 1 <_ K ) |
35 |
16
|
zred |
|- ( ( ph /\ b e. B ) -> K e. RR ) |
36 |
35
|
leidd |
|- ( ( ph /\ b e. B ) -> K <_ K ) |
37 |
32 16 16 34 36
|
elfzd |
|- ( ( ph /\ b e. B ) -> K e. ( 1 ... K ) ) |
38 |
31 37
|
ffvelrnd |
|- ( ( ph /\ b e. B ) -> ( b ` K ) e. ( 1 ... ( N + K ) ) ) |
39 |
|
elfznn |
|- ( ( b ` K ) e. ( 1 ... ( N + K ) ) -> ( b ` K ) e. NN ) |
40 |
38 39
|
syl |
|- ( ( ph /\ b e. B ) -> ( b ` K ) e. NN ) |
41 |
40
|
nnzd |
|- ( ( ph /\ b e. B ) -> ( b ` K ) e. ZZ ) |
42 |
17 41
|
zsubcld |
|- ( ( ph /\ b e. B ) -> ( ( N + K ) - ( b ` K ) ) e. ZZ ) |
43 |
40
|
nnred |
|- ( ( ph /\ b e. B ) -> ( b ` K ) e. RR ) |
44 |
43
|
recnd |
|- ( ( ph /\ b e. B ) -> ( b ` K ) e. CC ) |
45 |
44
|
addid1d |
|- ( ( ph /\ b e. B ) -> ( ( b ` K ) + 0 ) = ( b ` K ) ) |
46 |
|
elfzle2 |
|- ( ( b ` K ) e. ( 1 ... ( N + K ) ) -> ( b ` K ) <_ ( N + K ) ) |
47 |
38 46
|
syl |
|- ( ( ph /\ b e. B ) -> ( b ` K ) <_ ( N + K ) ) |
48 |
45 47
|
eqbrtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` K ) + 0 ) <_ ( N + K ) ) |
49 |
|
0red |
|- ( ( ph /\ b e. B ) -> 0 e. RR ) |
50 |
17
|
zred |
|- ( ( ph /\ b e. B ) -> ( N + K ) e. RR ) |
51 |
43 49 50
|
leaddsub2d |
|- ( ( ph /\ b e. B ) -> ( ( ( b ` K ) + 0 ) <_ ( N + K ) <-> 0 <_ ( ( N + K ) - ( b ` K ) ) ) ) |
52 |
48 51
|
mpbid |
|- ( ( ph /\ b e. B ) -> 0 <_ ( ( N + K ) - ( b ` K ) ) ) |
53 |
42 52
|
jca |
|- ( ( ph /\ b e. B ) -> ( ( ( N + K ) - ( b ` K ) ) e. ZZ /\ 0 <_ ( ( N + K ) - ( b ` K ) ) ) ) |
54 |
|
elnn0z |
|- ( ( ( N + K ) - ( b ` K ) ) e. NN0 <-> ( ( ( N + K ) - ( b ` K ) ) e. ZZ /\ 0 <_ ( ( N + K ) - ( b ` K ) ) ) ) |
55 |
53 54
|
sylibr |
|- ( ( ph /\ b e. B ) -> ( ( N + K ) - ( b ` K ) ) e. NN0 ) |
56 |
55
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( N + K ) - ( b ` K ) ) e. NN0 ) |
57 |
56
|
3impa |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( N + K ) - ( b ` K ) ) e. NN0 ) |
58 |
57
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ k = ( K + 1 ) ) -> ( ( N + K ) - ( b ` K ) ) e. NN0 ) |
59 |
|
eleq1 |
|- ( ( ( b ` 1 ) - 1 ) = if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( b ` 1 ) - 1 ) e. NN0 <-> if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) e. NN0 ) ) |
60 |
|
eleq1 |
|- ( ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) = if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) -> ( ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) e. NN0 <-> if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) e. NN0 ) ) |
61 |
|
1red |
|- ( ( ph /\ b e. B ) -> 1 e. RR ) |
62 |
61
|
leidd |
|- ( ( ph /\ b e. B ) -> 1 <_ 1 ) |
63 |
32 16 32 62 34
|
elfzd |
|- ( ( ph /\ b e. B ) -> 1 e. ( 1 ... K ) ) |
64 |
31 63
|
ffvelrnd |
|- ( ( ph /\ b e. B ) -> ( b ` 1 ) e. ( 1 ... ( N + K ) ) ) |
65 |
|
elfznn |
|- ( ( b ` 1 ) e. ( 1 ... ( N + K ) ) -> ( b ` 1 ) e. NN ) |
66 |
65
|
nnzd |
|- ( ( b ` 1 ) e. ( 1 ... ( N + K ) ) -> ( b ` 1 ) e. ZZ ) |
67 |
64 66
|
syl |
|- ( ( ph /\ b e. B ) -> ( b ` 1 ) e. ZZ ) |
68 |
67 32
|
zsubcld |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) - 1 ) e. ZZ ) |
69 |
|
1cnd |
|- ( ( ph /\ b e. B ) -> 1 e. CC ) |
70 |
69
|
addid1d |
|- ( ( ph /\ b e. B ) -> ( 1 + 0 ) = 1 ) |
71 |
|
elfzle1 |
|- ( ( b ` 1 ) e. ( 1 ... ( N + K ) ) -> 1 <_ ( b ` 1 ) ) |
72 |
64 71
|
syl |
|- ( ( ph /\ b e. B ) -> 1 <_ ( b ` 1 ) ) |
73 |
70 72
|
eqbrtrd |
|- ( ( ph /\ b e. B ) -> ( 1 + 0 ) <_ ( b ` 1 ) ) |
74 |
67
|
zred |
|- ( ( ph /\ b e. B ) -> ( b ` 1 ) e. RR ) |
75 |
61 49 74
|
leaddsub2d |
|- ( ( ph /\ b e. B ) -> ( ( 1 + 0 ) <_ ( b ` 1 ) <-> 0 <_ ( ( b ` 1 ) - 1 ) ) ) |
76 |
73 75
|
mpbid |
|- ( ( ph /\ b e. B ) -> 0 <_ ( ( b ` 1 ) - 1 ) ) |
77 |
68 76
|
jca |
|- ( ( ph /\ b e. B ) -> ( ( ( b ` 1 ) - 1 ) e. ZZ /\ 0 <_ ( ( b ` 1 ) - 1 ) ) ) |
78 |
|
elnn0z |
|- ( ( ( b ` 1 ) - 1 ) e. NN0 <-> ( ( ( b ` 1 ) - 1 ) e. ZZ /\ 0 <_ ( ( b ` 1 ) - 1 ) ) ) |
79 |
77 78
|
sylibr |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) - 1 ) e. NN0 ) |
80 |
79
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( b ` 1 ) - 1 ) e. NN0 ) |
81 |
80
|
3impa |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( b ` 1 ) - 1 ) e. NN0 ) |
82 |
81
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( ( b ` 1 ) - 1 ) e. NN0 ) |
83 |
82
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ k = 1 ) -> ( ( b ` 1 ) - 1 ) e. NN0 ) |
84 |
31
|
3adant3 |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
85 |
84
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
86 |
|
1zzd |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> 1 e. ZZ ) |
87 |
16
|
3adant3 |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> K e. ZZ ) |
88 |
87
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> K e. ZZ ) |
89 |
|
simp3 |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ( 1 ... ( K + 1 ) ) ) |
90 |
|
elfznn |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k e. NN ) |
91 |
89 90
|
syl |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. NN ) |
92 |
91
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. NN ) |
93 |
92
|
nnzd |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. ZZ ) |
94 |
92
|
nnge1d |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> 1 <_ k ) |
95 |
|
elfzle2 |
|- ( k e. ( 1 ... ( K + 1 ) ) -> k <_ ( K + 1 ) ) |
96 |
89 95
|
syl |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> k <_ ( K + 1 ) ) |
97 |
96
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k <_ ( K + 1 ) ) |
98 |
|
neqne |
|- ( -. k = ( K + 1 ) -> k =/= ( K + 1 ) ) |
99 |
98
|
adantl |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k =/= ( K + 1 ) ) |
100 |
99
|
necomd |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) =/= k ) |
101 |
97 100
|
jca |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k <_ ( K + 1 ) /\ ( K + 1 ) =/= k ) ) |
102 |
92
|
nnred |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. RR ) |
103 |
88
|
zred |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> K e. RR ) |
104 |
|
1red |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> 1 e. RR ) |
105 |
103 104
|
readdcld |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( K + 1 ) e. RR ) |
106 |
102 105
|
ltlend |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k < ( K + 1 ) <-> ( k <_ ( K + 1 ) /\ ( K + 1 ) =/= k ) ) ) |
107 |
101 106
|
mpbird |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k < ( K + 1 ) ) |
108 |
91
|
nnzd |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. ZZ ) |
109 |
|
zleltp1 |
|- ( ( k e. ZZ /\ K e. ZZ ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
110 |
108 87 109
|
syl2anc |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
111 |
110
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k <_ K <-> k < ( K + 1 ) ) ) |
112 |
107 111
|
mpbird |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k <_ K ) |
113 |
86 88 93 94 112
|
elfzd |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> k e. ( 1 ... K ) ) |
114 |
85 113
|
ffvelrnd |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( b ` k ) e. ( 1 ... ( N + K ) ) ) |
115 |
|
elfznn |
|- ( ( b ` k ) e. ( 1 ... ( N + K ) ) -> ( b ` k ) e. NN ) |
116 |
114 115
|
syl |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( b ` k ) e. NN ) |
117 |
116
|
nnzd |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( b ` k ) e. ZZ ) |
118 |
117
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` k ) e. ZZ ) |
119 |
85
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
120 |
|
1zzd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. ZZ ) |
121 |
88
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> K e. ZZ ) |
122 |
93
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ZZ ) |
123 |
122 120
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ZZ ) |
124 |
94
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ k ) |
125 |
|
neqne |
|- ( -. k = 1 -> k =/= 1 ) |
126 |
125
|
adantl |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k =/= 1 ) |
127 |
124 126
|
jca |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 <_ k /\ k =/= 1 ) ) |
128 |
104
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. RR ) |
129 |
102
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. RR ) |
130 |
128 129
|
ltlend |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 < k <-> ( 1 <_ k /\ k =/= 1 ) ) ) |
131 |
127 130
|
mpbird |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 < k ) |
132 |
120 122
|
zltlem1d |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 < k <-> 1 <_ ( k - 1 ) ) ) |
133 |
131 132
|
mpbid |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ ( k - 1 ) ) |
134 |
91
|
nnred |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> k e. RR ) |
135 |
61
|
3adant3 |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> 1 e. RR ) |
136 |
35
|
3adant3 |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> K e. RR ) |
137 |
|
lesubadd |
|- ( ( k e. RR /\ 1 e. RR /\ K e. RR ) -> ( ( k - 1 ) <_ K <-> k <_ ( K + 1 ) ) ) |
138 |
134 135 136 137
|
syl3anc |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( ( k - 1 ) <_ K <-> k <_ ( K + 1 ) ) ) |
139 |
96 138
|
mpbird |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> ( k - 1 ) <_ K ) |
140 |
139
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> ( k - 1 ) <_ K ) |
141 |
140
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) <_ K ) |
142 |
120 121 123 133 141
|
elfzd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) e. ( 1 ... K ) ) |
143 |
119 142
|
ffvelrnd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` ( k - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
144 |
|
elfznn |
|- ( ( b ` ( k - 1 ) ) e. ( 1 ... ( N + K ) ) -> ( b ` ( k - 1 ) ) e. NN ) |
145 |
143 144
|
syl |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` ( k - 1 ) ) e. NN ) |
146 |
145
|
nnzd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` ( k - 1 ) ) e. ZZ ) |
147 |
118 146
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( b ` k ) - ( b ` ( k - 1 ) ) ) e. ZZ ) |
148 |
147 120
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) e. ZZ ) |
149 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
150 |
149
|
a1i |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 0 + 1 ) = 1 ) |
151 |
|
1cnd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 e. CC ) |
152 |
151
|
subidd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 - 1 ) = 0 ) |
153 |
146
|
zred |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` ( k - 1 ) ) e. RR ) |
154 |
153
|
recnd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` ( k - 1 ) ) e. CC ) |
155 |
154
|
addid1d |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( b ` ( k - 1 ) ) + 0 ) = ( b ` ( k - 1 ) ) ) |
156 |
129
|
ltm1d |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( k - 1 ) < k ) |
157 |
113
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> k e. ( 1 ... K ) ) |
158 |
142 157
|
jca |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k - 1 ) e. ( 1 ... K ) /\ k e. ( 1 ... K ) ) ) |
159 |
30
|
simprd |
|- ( ( ph /\ b e. B ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) |
160 |
159
|
3adant3 |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) |
161 |
160
|
adantr |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) |
162 |
161
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) |
163 |
|
breq1 |
|- ( x = ( k - 1 ) -> ( x < y <-> ( k - 1 ) < y ) ) |
164 |
|
fveq2 |
|- ( x = ( k - 1 ) -> ( b ` x ) = ( b ` ( k - 1 ) ) ) |
165 |
164
|
breq1d |
|- ( x = ( k - 1 ) -> ( ( b ` x ) < ( b ` y ) <-> ( b ` ( k - 1 ) ) < ( b ` y ) ) ) |
166 |
163 165
|
imbi12d |
|- ( x = ( k - 1 ) -> ( ( x < y -> ( b ` x ) < ( b ` y ) ) <-> ( ( k - 1 ) < y -> ( b ` ( k - 1 ) ) < ( b ` y ) ) ) ) |
167 |
|
breq2 |
|- ( y = k -> ( ( k - 1 ) < y <-> ( k - 1 ) < k ) ) |
168 |
|
fveq2 |
|- ( y = k -> ( b ` y ) = ( b ` k ) ) |
169 |
168
|
breq2d |
|- ( y = k -> ( ( b ` ( k - 1 ) ) < ( b ` y ) <-> ( b ` ( k - 1 ) ) < ( b ` k ) ) ) |
170 |
167 169
|
imbi12d |
|- ( y = k -> ( ( ( k - 1 ) < y -> ( b ` ( k - 1 ) ) < ( b ` y ) ) <-> ( ( k - 1 ) < k -> ( b ` ( k - 1 ) ) < ( b ` k ) ) ) ) |
171 |
166 170
|
rspc2va |
|- ( ( ( ( k - 1 ) e. ( 1 ... K ) /\ k e. ( 1 ... K ) ) /\ A. x e. ( 1 ... K ) A. y e. ( 1 ... K ) ( x < y -> ( b ` x ) < ( b ` y ) ) ) -> ( ( k - 1 ) < k -> ( b ` ( k - 1 ) ) < ( b ` k ) ) ) |
172 |
158 162 171
|
syl2anc |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( k - 1 ) < k -> ( b ` ( k - 1 ) ) < ( b ` k ) ) ) |
173 |
156 172
|
mpd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` ( k - 1 ) ) < ( b ` k ) ) |
174 |
155 173
|
eqbrtrd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( b ` ( k - 1 ) ) + 0 ) < ( b ` k ) ) |
175 |
|
0red |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 0 e. RR ) |
176 |
118
|
zred |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( b ` k ) e. RR ) |
177 |
153 175 176
|
ltaddsub2d |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( b ` ( k - 1 ) ) + 0 ) < ( b ` k ) <-> 0 < ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) ) |
178 |
174 177
|
mpbid |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 0 < ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) |
179 |
152 178
|
eqbrtrd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 - 1 ) < ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) |
180 |
|
zlem1lt |
|- ( ( 1 e. ZZ /\ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) e. ZZ ) -> ( 1 <_ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) <-> ( 1 - 1 ) < ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) ) |
181 |
120 147 180
|
syl2anc |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 1 <_ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) <-> ( 1 - 1 ) < ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) ) |
182 |
179 181
|
mpbird |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 1 <_ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) |
183 |
150 182
|
eqbrtrd |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( 0 + 1 ) <_ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) ) |
184 |
147
|
zred |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( b ` k ) - ( b ` ( k - 1 ) ) ) e. RR ) |
185 |
|
leaddsub |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) e. RR ) -> ( ( 0 + 1 ) <_ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) <-> 0 <_ ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) |
186 |
175 128 184 185
|
syl3anc |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( 0 + 1 ) <_ ( ( b ` k ) - ( b ` ( k - 1 ) ) ) <-> 0 <_ ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) |
187 |
183 186
|
mpbid |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> 0 <_ ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) |
188 |
148 187
|
jca |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) e. ZZ /\ 0 <_ ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) |
189 |
|
elnn0z |
|- ( ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) e. NN0 <-> ( ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) e. ZZ /\ 0 <_ ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) |
190 |
188 189
|
sylibr |
|- ( ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) /\ -. k = 1 ) -> ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) e. NN0 ) |
191 |
59 60 83 190
|
ifbothda |
|- ( ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) /\ -. k = ( K + 1 ) ) -> if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) e. NN0 ) |
192 |
11 12 58 191
|
ifbothda |
|- ( ( ph /\ b e. B /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) |
193 |
192
|
3expa |
|- ( ( ( ph /\ b e. B ) /\ k e. ( 1 ... ( K + 1 ) ) ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) e. NN0 ) |
194 |
193
|
fmpttd |
|- ( ( ph /\ b e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 ) |
195 |
|
eqidd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
196 |
|
simpr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> k = i ) |
197 |
196
|
eqeq1d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( k = ( K + 1 ) <-> i = ( K + 1 ) ) ) |
198 |
196
|
eqeq1d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( k = 1 <-> i = 1 ) ) |
199 |
196
|
fveq2d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( b ` k ) = ( b ` i ) ) |
200 |
196
|
fvoveq1d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( b ` ( k - 1 ) ) = ( b ` ( i - 1 ) ) ) |
201 |
199 200
|
oveq12d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( ( b ` k ) - ( b ` ( k - 1 ) ) ) = ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) |
202 |
201
|
oveq1d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) = ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) |
203 |
198 202
|
ifbieq2d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) = if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) |
204 |
197 203
|
ifbieq2d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) /\ k = i ) -> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) = if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) ) |
205 |
|
simpr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
206 |
|
ovexd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( N + K ) - ( b ` K ) ) e. _V ) |
207 |
|
ovexd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( b ` 1 ) - 1 ) e. _V ) |
208 |
|
ovexd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) e. _V ) |
209 |
207 208
|
ifcld |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) e. _V ) |
210 |
206 209
|
ifcld |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) e. _V ) |
211 |
195 204 205 210
|
fvmptd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) ) |
212 |
211
|
sumeq2dv |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) ) |
213 |
2
|
adantr |
|- ( ( ph /\ b e. B ) -> K e. NN ) |
214 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
215 |
213 214
|
eleqtrdi |
|- ( ( ph /\ b e. B ) -> K e. ( ZZ>= ` 1 ) ) |
216 |
|
eleq1 |
|- ( ( ( N + K ) - ( b ` K ) ) = if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) -> ( ( ( N + K ) - ( b ` K ) ) e. ZZ <-> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) e. ZZ ) ) |
217 |
|
eleq1 |
|- ( if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) = if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) -> ( if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) e. ZZ <-> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) e. ZZ ) ) |
218 |
14
|
3adant3 |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> N e. ZZ ) |
219 |
218
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ i = ( K + 1 ) ) -> N e. ZZ ) |
220 |
16
|
3adant3 |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> K e. ZZ ) |
221 |
220
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ i = ( K + 1 ) ) -> K e. ZZ ) |
222 |
219 221
|
zaddcld |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ i = ( K + 1 ) ) -> ( N + K ) e. ZZ ) |
223 |
40
|
3adant3 |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( b ` K ) e. NN ) |
224 |
223
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ i = ( K + 1 ) ) -> ( b ` K ) e. NN ) |
225 |
224
|
nnzd |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ i = ( K + 1 ) ) -> ( b ` K ) e. ZZ ) |
226 |
222 225
|
zsubcld |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ i = ( K + 1 ) ) -> ( ( N + K ) - ( b ` K ) ) e. ZZ ) |
227 |
|
eleq1 |
|- ( ( ( b ` 1 ) - 1 ) = if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) -> ( ( ( b ` 1 ) - 1 ) e. ZZ <-> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) e. ZZ ) ) |
228 |
|
eleq1 |
|- ( ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) -> ( ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) e. ZZ <-> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) e. ZZ ) ) |
229 |
67
|
3adant3 |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( b ` 1 ) e. ZZ ) |
230 |
229
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> ( b ` 1 ) e. ZZ ) |
231 |
230
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ i = 1 ) -> ( b ` 1 ) e. ZZ ) |
232 |
|
1zzd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ i = 1 ) -> 1 e. ZZ ) |
233 |
231 232
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ i = 1 ) -> ( ( b ` 1 ) - 1 ) e. ZZ ) |
234 |
31
|
3adant3 |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
235 |
234
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
236 |
235
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
237 |
|
1zzd |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> 1 e. ZZ ) |
238 |
220
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> K e. ZZ ) |
239 |
|
elfznn |
|- ( i e. ( 1 ... ( K + 1 ) ) -> i e. NN ) |
240 |
239
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. NN ) |
241 |
240
|
3impa |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. NN ) |
242 |
241
|
nnzd |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. ZZ ) |
243 |
242
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i e. ZZ ) |
244 |
241
|
nnge1d |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> 1 <_ i ) |
245 |
244
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> 1 <_ i ) |
246 |
|
simp3 |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> i e. ( 1 ... ( K + 1 ) ) ) |
247 |
|
elfzle2 |
|- ( i e. ( 1 ... ( K + 1 ) ) -> i <_ ( K + 1 ) ) |
248 |
246 247
|
syl |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> i <_ ( K + 1 ) ) |
249 |
248
|
adantr |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i <_ ( K + 1 ) ) |
250 |
|
neqne |
|- ( -. i = ( K + 1 ) -> i =/= ( K + 1 ) ) |
251 |
250
|
adantl |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i =/= ( K + 1 ) ) |
252 |
251
|
necomd |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> ( K + 1 ) =/= i ) |
253 |
249 252
|
jca |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> ( i <_ ( K + 1 ) /\ ( K + 1 ) =/= i ) ) |
254 |
243
|
zred |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i e. RR ) |
255 |
238
|
zred |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> K e. RR ) |
256 |
|
1red |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> 1 e. RR ) |
257 |
255 256
|
readdcld |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> ( K + 1 ) e. RR ) |
258 |
254 257
|
ltlend |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> ( i < ( K + 1 ) <-> ( i <_ ( K + 1 ) /\ ( K + 1 ) =/= i ) ) ) |
259 |
253 258
|
mpbird |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i < ( K + 1 ) ) |
260 |
|
zleltp1 |
|- ( ( i e. ZZ /\ K e. ZZ ) -> ( i <_ K <-> i < ( K + 1 ) ) ) |
261 |
243 238 260
|
syl2anc |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> ( i <_ K <-> i < ( K + 1 ) ) ) |
262 |
259 261
|
mpbird |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i <_ K ) |
263 |
237 238 243 245 262
|
elfzd |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> i e. ( 1 ... K ) ) |
264 |
263
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> i e. ( 1 ... K ) ) |
265 |
236 264
|
ffvelrnd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( b ` i ) e. ( 1 ... ( N + K ) ) ) |
266 |
|
elfznn |
|- ( ( b ` i ) e. ( 1 ... ( N + K ) ) -> ( b ` i ) e. NN ) |
267 |
265 266
|
syl |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( b ` i ) e. NN ) |
268 |
267
|
nnzd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( b ` i ) e. ZZ ) |
269 |
|
1zzd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> 1 e. ZZ ) |
270 |
238
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> K e. ZZ ) |
271 |
243
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> i e. ZZ ) |
272 |
271 269
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( i - 1 ) e. ZZ ) |
273 |
245
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> 1 <_ i ) |
274 |
|
neqne |
|- ( -. i = 1 -> i =/= 1 ) |
275 |
274
|
adantl |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> i =/= 1 ) |
276 |
273 275
|
jca |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( 1 <_ i /\ i =/= 1 ) ) |
277 |
|
1red |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> 1 e. RR ) |
278 |
271
|
zred |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> i e. RR ) |
279 |
277 278
|
ltlend |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( 1 < i <-> ( 1 <_ i /\ i =/= 1 ) ) ) |
280 |
276 279
|
mpbird |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> 1 < i ) |
281 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ i e. ZZ ) -> ( 1 < i <-> ( 1 + 1 ) <_ i ) ) |
282 |
269 271 281
|
syl2anc |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( 1 < i <-> ( 1 + 1 ) <_ i ) ) |
283 |
280 282
|
mpbid |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( 1 + 1 ) <_ i ) |
284 |
|
leaddsub |
|- ( ( 1 e. RR /\ 1 e. RR /\ i e. RR ) -> ( ( 1 + 1 ) <_ i <-> 1 <_ ( i - 1 ) ) ) |
285 |
277 277 278 284
|
syl3anc |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( ( 1 + 1 ) <_ i <-> 1 <_ ( i - 1 ) ) ) |
286 |
283 285
|
mpbid |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> 1 <_ ( i - 1 ) ) |
287 |
249
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> i <_ ( K + 1 ) ) |
288 |
255
|
adantr |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> K e. RR ) |
289 |
|
lesubadd |
|- ( ( i e. RR /\ 1 e. RR /\ K e. RR ) -> ( ( i - 1 ) <_ K <-> i <_ ( K + 1 ) ) ) |
290 |
278 277 288 289
|
syl3anc |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( ( i - 1 ) <_ K <-> i <_ ( K + 1 ) ) ) |
291 |
287 290
|
mpbird |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( i - 1 ) <_ K ) |
292 |
269 270 272 286 291
|
elfzd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( i - 1 ) e. ( 1 ... K ) ) |
293 |
236 292
|
ffvelrnd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( b ` ( i - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
294 |
|
elfznn |
|- ( ( b ` ( i - 1 ) ) e. ( 1 ... ( N + K ) ) -> ( b ` ( i - 1 ) ) e. NN ) |
295 |
293 294
|
syl |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( b ` ( i - 1 ) ) e. NN ) |
296 |
295
|
nnzd |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( b ` ( i - 1 ) ) e. ZZ ) |
297 |
268 296
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( ( b ` i ) - ( b ` ( i - 1 ) ) ) e. ZZ ) |
298 |
297 269
|
zsubcld |
|- ( ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) /\ -. i = 1 ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) e. ZZ ) |
299 |
227 228 233 298
|
ifbothda |
|- ( ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) /\ -. i = ( K + 1 ) ) -> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) e. ZZ ) |
300 |
216 217 226 299
|
ifbothda |
|- ( ( ph /\ b e. B /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) e. ZZ ) |
301 |
300
|
3expa |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) e. ZZ ) |
302 |
301
|
zcnd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) e. CC ) |
303 |
|
eqeq1 |
|- ( i = ( K + 1 ) -> ( i = ( K + 1 ) <-> ( K + 1 ) = ( K + 1 ) ) ) |
304 |
|
eqeq1 |
|- ( i = ( K + 1 ) -> ( i = 1 <-> ( K + 1 ) = 1 ) ) |
305 |
|
fveq2 |
|- ( i = ( K + 1 ) -> ( b ` i ) = ( b ` ( K + 1 ) ) ) |
306 |
|
fvoveq1 |
|- ( i = ( K + 1 ) -> ( b ` ( i - 1 ) ) = ( b ` ( ( K + 1 ) - 1 ) ) ) |
307 |
305 306
|
oveq12d |
|- ( i = ( K + 1 ) -> ( ( b ` i ) - ( b ` ( i - 1 ) ) ) = ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) ) |
308 |
307
|
oveq1d |
|- ( i = ( K + 1 ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) |
309 |
304 308
|
ifbieq2d |
|- ( i = ( K + 1 ) -> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) = if ( ( K + 1 ) = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) |
310 |
303 309
|
ifbieq2d |
|- ( i = ( K + 1 ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) = if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( ( K + 1 ) = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) |
311 |
215 302 310
|
fsump1 |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) = ( sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) + if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( ( K + 1 ) = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) ) |
312 |
|
eqidd |
|- ( ( ph /\ b e. B ) -> ( K + 1 ) = ( K + 1 ) ) |
313 |
312
|
iftrued |
|- ( ( ph /\ b e. B ) -> if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( ( K + 1 ) = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) = ( ( N + K ) - ( b ` K ) ) ) |
314 |
313
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) + if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( ( K + 1 ) = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) = ( sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( b ` K ) ) ) ) |
315 |
|
elfznn |
|- ( i e. ( 1 ... K ) -> i e. NN ) |
316 |
315
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i e. NN ) |
317 |
316
|
nnred |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i e. RR ) |
318 |
35
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> K e. RR ) |
319 |
|
1red |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> 1 e. RR ) |
320 |
318 319
|
readdcld |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( K + 1 ) e. RR ) |
321 |
|
elfzle2 |
|- ( i e. ( 1 ... K ) -> i <_ K ) |
322 |
321
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i <_ K ) |
323 |
318
|
ltp1d |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> K < ( K + 1 ) ) |
324 |
317 318 320 322 323
|
lelttrd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i < ( K + 1 ) ) |
325 |
317 324
|
ltned |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i =/= ( K + 1 ) ) |
326 |
325
|
neneqd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> -. i = ( K + 1 ) ) |
327 |
326
|
iffalsed |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) = if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) |
328 |
327
|
sumeq2dv |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) = sum_ i e. ( 1 ... K ) if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) |
329 |
328
|
oveq1d |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( b ` K ) ) ) = ( sum_ i e. ( 1 ... K ) if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) + ( ( N + K ) - ( b ` K ) ) ) ) |
330 |
|
eqeq1 |
|- ( ( ( b ` 1 ) - 1 ) = if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) -> ( ( ( b ` 1 ) - 1 ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) <-> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) ) |
331 |
|
eqeq1 |
|- ( ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) -> ( ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) <-> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) ) |
332 |
|
eqidd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> ( ( b ` 1 ) - 1 ) = ( ( b ` 1 ) - 1 ) ) |
333 |
|
simpr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> i = 1 ) |
334 |
333
|
iftrued |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( b ` 1 ) ) |
335 |
334
|
eqcomd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> ( b ` 1 ) = if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) ) |
336 |
335
|
oveq1d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> ( ( b ` 1 ) - 1 ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) |
337 |
332 336
|
eqtrd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> ( ( b ` 1 ) - 1 ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) |
338 |
|
eqidd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) |
339 |
|
simpr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> -. i = 1 ) |
340 |
339
|
iffalsed |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) |
341 |
340
|
oveq1d |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) |
342 |
341
|
eqcomd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) |
343 |
338 342
|
eqtrd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) |
344 |
330 331 337 343
|
ifbothda |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) = ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) |
345 |
344
|
sumeq2dv |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) = sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) ) |
346 |
345
|
oveq1d |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) + ( ( N + K ) - ( b ` K ) ) ) = ( sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) + ( ( N + K ) - ( b ` K ) ) ) ) |
347 |
|
fzfid |
|- ( ( ph /\ b e. B ) -> ( 1 ... K ) e. Fin ) |
348 |
|
eleq1 |
|- ( ( b ` 1 ) = if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) -> ( ( b ` 1 ) e. ZZ <-> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) e. ZZ ) ) |
349 |
|
eleq1 |
|- ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) = if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) -> ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) e. ZZ <-> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) e. ZZ ) ) |
350 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ i = 1 ) -> ( b ` 1 ) e. ZZ ) |
351 |
31
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
352 |
|
simpr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i e. ( 1 ... K ) ) |
353 |
351 352
|
ffvelrnd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( b ` i ) e. ( 1 ... ( N + K ) ) ) |
354 |
266
|
nnzd |
|- ( ( b ` i ) e. ( 1 ... ( N + K ) ) -> ( b ` i ) e. ZZ ) |
355 |
353 354
|
syl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( b ` i ) e. ZZ ) |
356 |
355
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( b ` i ) e. ZZ ) |
357 |
351
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
358 |
|
1zzd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> 1 e. ZZ ) |
359 |
16
|
ad2antrr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> K e. ZZ ) |
360 |
316
|
nnzd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> i e. ZZ ) |
361 |
360
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> i e. ZZ ) |
362 |
361 358
|
zsubcld |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( i - 1 ) e. ZZ ) |
363 |
316
|
nnge1d |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> 1 <_ i ) |
364 |
363
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> 1 <_ i ) |
365 |
339 274
|
syl |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> i =/= 1 ) |
366 |
364 365
|
jca |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( 1 <_ i /\ i =/= 1 ) ) |
367 |
319
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> 1 e. RR ) |
368 |
317
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> i e. RR ) |
369 |
367 368
|
ltlend |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( 1 < i <-> ( 1 <_ i /\ i =/= 1 ) ) ) |
370 |
366 369
|
mpbird |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> 1 < i ) |
371 |
|
zltlem1 |
|- ( ( 1 e. ZZ /\ i e. ZZ ) -> ( 1 < i <-> 1 <_ ( i - 1 ) ) ) |
372 |
358 361 371
|
syl2anc |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( 1 < i <-> 1 <_ ( i - 1 ) ) ) |
373 |
370 372
|
mpbid |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> 1 <_ ( i - 1 ) ) |
374 |
317 319
|
resubcld |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( i - 1 ) e. RR ) |
375 |
317
|
lem1d |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( i - 1 ) <_ i ) |
376 |
374 317 318 375 322
|
letrd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( i - 1 ) <_ K ) |
377 |
376
|
adantr |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( i - 1 ) <_ K ) |
378 |
358 359 362 373 377
|
elfzd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( i - 1 ) e. ( 1 ... K ) ) |
379 |
357 378
|
ffvelrnd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( b ` ( i - 1 ) ) e. ( 1 ... ( N + K ) ) ) |
380 |
379 294
|
syl |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( b ` ( i - 1 ) ) e. NN ) |
381 |
380
|
nnzd |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( b ` ( i - 1 ) ) e. ZZ ) |
382 |
356 381
|
zsubcld |
|- ( ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) /\ -. i = 1 ) -> ( ( b ` i ) - ( b ` ( i - 1 ) ) ) e. ZZ ) |
383 |
348 349 350 382
|
ifbothda |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) e. ZZ ) |
384 |
383
|
zcnd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) e. CC ) |
385 |
69
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> 1 e. CC ) |
386 |
347 384 385
|
fsumsub |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( sum_ i e. ( 1 ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - sum_ i e. ( 1 ... K ) 1 ) ) |
387 |
|
id |
|- ( i = 1 -> i = 1 ) |
388 |
387
|
iftrued |
|- ( i = 1 -> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( b ` 1 ) ) |
389 |
215 384 388
|
fsum1p |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) ) ) |
390 |
61
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> 1 e. RR ) |
391 |
|
elfzle1 |
|- ( i e. ( ( 1 + 1 ) ... K ) -> ( 1 + 1 ) <_ i ) |
392 |
391
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> ( 1 + 1 ) <_ i ) |
393 |
32
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> 1 e. ZZ ) |
394 |
|
elfzelz |
|- ( i e. ( ( 1 + 1 ) ... K ) -> i e. ZZ ) |
395 |
394
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> i e. ZZ ) |
396 |
393 395 281
|
syl2anc |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> ( 1 < i <-> ( 1 + 1 ) <_ i ) ) |
397 |
392 396
|
mpbird |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> 1 < i ) |
398 |
390 397
|
ltned |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> 1 =/= i ) |
399 |
398
|
necomd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> i =/= 1 ) |
400 |
399
|
neneqd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> -. i = 1 ) |
401 |
400
|
iffalsed |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... K ) ) -> if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) |
402 |
401
|
sumeq2dv |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( ( 1 + 1 ) ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = sum_ i e. ( ( 1 + 1 ) ... K ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) |
403 |
402
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) ) = ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... K ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) ) |
404 |
35
|
recnd |
|- ( ( ph /\ b e. B ) -> K e. CC ) |
405 |
404 69
|
npcand |
|- ( ( ph /\ b e. B ) -> ( ( K - 1 ) + 1 ) = K ) |
406 |
405
|
eqcomd |
|- ( ( ph /\ b e. B ) -> K = ( ( K - 1 ) + 1 ) ) |
407 |
406
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( 1 + 1 ) ... K ) = ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) |
408 |
407
|
sumeq1d |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( ( 1 + 1 ) ... K ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) = sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) |
409 |
408
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... K ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) ) |
410 |
|
elfzelz |
|- ( i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) -> i e. ZZ ) |
411 |
410
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> i e. ZZ ) |
412 |
411
|
zcnd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> i e. CC ) |
413 |
|
1cnd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> 1 e. CC ) |
414 |
412 413
|
npcand |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( ( i - 1 ) + 1 ) = i ) |
415 |
414
|
eqcomd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> i = ( ( i - 1 ) + 1 ) ) |
416 |
415
|
fveq2d |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( b ` i ) = ( b ` ( ( i - 1 ) + 1 ) ) ) |
417 |
|
eqidd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( b ` ( i - 1 ) ) = ( b ` ( i - 1 ) ) ) |
418 |
416 417
|
oveq12d |
|- ( ( ( ph /\ b e. B ) /\ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ) -> ( ( b ` i ) - ( b ` ( i - 1 ) ) ) = ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) |
419 |
418
|
sumeq2dv |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) = sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) |
420 |
419
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) ) |
421 |
16 32
|
zsubcld |
|- ( ( ph /\ b e. B ) -> ( K - 1 ) e. ZZ ) |
422 |
31
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
423 |
|
1zzd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 e. ZZ ) |
424 |
16
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> K e. ZZ ) |
425 |
|
elfznn |
|- ( s e. ( 1 ... ( K - 1 ) ) -> s e. NN ) |
426 |
425
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. NN ) |
427 |
426
|
nnzd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. ZZ ) |
428 |
427
|
peano2zd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) e. ZZ ) |
429 |
|
1red |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 e. RR ) |
430 |
426
|
nnred |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. RR ) |
431 |
430 429
|
readdcld |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) e. RR ) |
432 |
426
|
nnge1d |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 <_ s ) |
433 |
430
|
lep1d |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s <_ ( s + 1 ) ) |
434 |
429 430 431 432 433
|
letrd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> 1 <_ ( s + 1 ) ) |
435 |
|
elfzle2 |
|- ( s e. ( 1 ... ( K - 1 ) ) -> s <_ ( K - 1 ) ) |
436 |
435
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s <_ ( K - 1 ) ) |
437 |
35
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> K e. RR ) |
438 |
|
leaddsub |
|- ( ( s e. RR /\ 1 e. RR /\ K e. RR ) -> ( ( s + 1 ) <_ K <-> s <_ ( K - 1 ) ) ) |
439 |
430 429 437 438
|
syl3anc |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( ( s + 1 ) <_ K <-> s <_ ( K - 1 ) ) ) |
440 |
436 439
|
mpbird |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) <_ K ) |
441 |
423 424 428 434 440
|
elfzd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( s + 1 ) e. ( 1 ... K ) ) |
442 |
422 441
|
ffvelrnd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( b ` ( s + 1 ) ) e. ( 1 ... ( N + K ) ) ) |
443 |
|
elfznn |
|- ( ( b ` ( s + 1 ) ) e. ( 1 ... ( N + K ) ) -> ( b ` ( s + 1 ) ) e. NN ) |
444 |
442 443
|
syl |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( b ` ( s + 1 ) ) e. NN ) |
445 |
444
|
nnzd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( b ` ( s + 1 ) ) e. ZZ ) |
446 |
437 429
|
resubcld |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( K - 1 ) e. RR ) |
447 |
437
|
lem1d |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( K - 1 ) <_ K ) |
448 |
430 446 437 436 447
|
letrd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s <_ K ) |
449 |
423 424 427 432 448
|
elfzd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> s e. ( 1 ... K ) ) |
450 |
422 449
|
ffvelrnd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( b ` s ) e. ( 1 ... ( N + K ) ) ) |
451 |
|
elfznn |
|- ( ( b ` s ) e. ( 1 ... ( N + K ) ) -> ( b ` s ) e. NN ) |
452 |
451
|
nnzd |
|- ( ( b ` s ) e. ( 1 ... ( N + K ) ) -> ( b ` s ) e. ZZ ) |
453 |
450 452
|
syl |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( b ` s ) e. ZZ ) |
454 |
445 453
|
zsubcld |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( ( b ` ( s + 1 ) ) - ( b ` s ) ) e. ZZ ) |
455 |
454
|
zcnd |
|- ( ( ( ph /\ b e. B ) /\ s e. ( 1 ... ( K - 1 ) ) ) -> ( ( b ` ( s + 1 ) ) - ( b ` s ) ) e. CC ) |
456 |
|
fvoveq1 |
|- ( s = ( i - 1 ) -> ( b ` ( s + 1 ) ) = ( b ` ( ( i - 1 ) + 1 ) ) ) |
457 |
|
fveq2 |
|- ( s = ( i - 1 ) -> ( b ` s ) = ( b ` ( i - 1 ) ) ) |
458 |
456 457
|
oveq12d |
|- ( s = ( i - 1 ) -> ( ( b ` ( s + 1 ) ) - ( b ` s ) ) = ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) |
459 |
32 32 421 455 458
|
fsumshft |
|- ( ( ph /\ b e. B ) -> sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) = sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) |
460 |
459
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) ) = ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) ) |
461 |
460
|
eqcomd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) = ( ( b ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) ) ) |
462 |
|
fvoveq1 |
|- ( s = i -> ( b ` ( s + 1 ) ) = ( b ` ( i + 1 ) ) ) |
463 |
|
fveq2 |
|- ( s = i -> ( b ` s ) = ( b ` i ) ) |
464 |
462 463
|
oveq12d |
|- ( s = i -> ( ( b ` ( s + 1 ) ) - ( b ` s ) ) = ( ( b ` ( i + 1 ) ) - ( b ` i ) ) ) |
465 |
|
nfcv |
|- F/_ i ( 1 ... ( K - 1 ) ) |
466 |
|
nfcv |
|- F/_ s ( 1 ... ( K - 1 ) ) |
467 |
|
nfcv |
|- F/_ i ( ( b ` ( s + 1 ) ) - ( b ` s ) ) |
468 |
|
nfcv |
|- F/_ s ( ( b ` ( i + 1 ) ) - ( b ` i ) ) |
469 |
464 465 466 467 468
|
cbvsum |
|- sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) = sum_ i e. ( 1 ... ( K - 1 ) ) ( ( b ` ( i + 1 ) ) - ( b ` i ) ) |
470 |
469
|
a1i |
|- ( ( ph /\ b e. B ) -> sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) = sum_ i e. ( 1 ... ( K - 1 ) ) ( ( b ` ( i + 1 ) ) - ( b ` i ) ) ) |
471 |
470
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) ) = ( ( b ` 1 ) + sum_ i e. ( 1 ... ( K - 1 ) ) ( ( b ` ( i + 1 ) ) - ( b ` i ) ) ) ) |
472 |
|
fveq2 |
|- ( w = i -> ( b ` w ) = ( b ` i ) ) |
473 |
|
fveq2 |
|- ( w = ( i + 1 ) -> ( b ` w ) = ( b ` ( i + 1 ) ) ) |
474 |
|
fveq2 |
|- ( w = 1 -> ( b ` w ) = ( b ` 1 ) ) |
475 |
|
fveq2 |
|- ( w = ( ( K - 1 ) + 1 ) -> ( b ` w ) = ( b ` ( ( K - 1 ) + 1 ) ) ) |
476 |
405 215
|
eqeltrd |
|- ( ( ph /\ b e. B ) -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
477 |
31
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> b : ( 1 ... K ) --> ( 1 ... ( N + K ) ) ) |
478 |
|
1zzd |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> 1 e. ZZ ) |
479 |
16
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> K e. ZZ ) |
480 |
|
elfzelz |
|- ( w e. ( 1 ... ( ( K - 1 ) + 1 ) ) -> w e. ZZ ) |
481 |
480
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> w e. ZZ ) |
482 |
|
elfzle1 |
|- ( w e. ( 1 ... ( ( K - 1 ) + 1 ) ) -> 1 <_ w ) |
483 |
482
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> 1 <_ w ) |
484 |
|
elfzle2 |
|- ( w e. ( 1 ... ( ( K - 1 ) + 1 ) ) -> w <_ ( ( K - 1 ) + 1 ) ) |
485 |
484
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> w <_ ( ( K - 1 ) + 1 ) ) |
486 |
405
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> ( ( K - 1 ) + 1 ) = K ) |
487 |
485 486
|
breqtrd |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> w <_ K ) |
488 |
478 479 481 483 487
|
elfzd |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> w e. ( 1 ... K ) ) |
489 |
477 488
|
ffvelrnd |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> ( b ` w ) e. ( 1 ... ( N + K ) ) ) |
490 |
|
elfznn |
|- ( ( b ` w ) e. ( 1 ... ( N + K ) ) -> ( b ` w ) e. NN ) |
491 |
490
|
nncnd |
|- ( ( b ` w ) e. ( 1 ... ( N + K ) ) -> ( b ` w ) e. CC ) |
492 |
489 491
|
syl |
|- ( ( ( ph /\ b e. B ) /\ w e. ( 1 ... ( ( K - 1 ) + 1 ) ) ) -> ( b ` w ) e. CC ) |
493 |
472 473 474 475 421 476 492
|
telfsum2 |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... ( K - 1 ) ) ( ( b ` ( i + 1 ) ) - ( b ` i ) ) = ( ( b ` ( ( K - 1 ) + 1 ) ) - ( b ` 1 ) ) ) |
494 |
493
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( 1 ... ( K - 1 ) ) ( ( b ` ( i + 1 ) ) - ( b ` i ) ) ) = ( ( b ` 1 ) + ( ( b ` ( ( K - 1 ) + 1 ) ) - ( b ` 1 ) ) ) ) |
495 |
74
|
recnd |
|- ( ( ph /\ b e. B ) -> ( b ` 1 ) e. CC ) |
496 |
40
|
nncnd |
|- ( ( ph /\ b e. B ) -> ( b ` K ) e. CC ) |
497 |
405
|
fveq2d |
|- ( ( ph /\ b e. B ) -> ( b ` ( ( K - 1 ) + 1 ) ) = ( b ` K ) ) |
498 |
497
|
eleq1d |
|- ( ( ph /\ b e. B ) -> ( ( b ` ( ( K - 1 ) + 1 ) ) e. CC <-> ( b ` K ) e. CC ) ) |
499 |
496 498
|
mpbird |
|- ( ( ph /\ b e. B ) -> ( b ` ( ( K - 1 ) + 1 ) ) e. CC ) |
500 |
495 499
|
pncan3d |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + ( ( b ` ( ( K - 1 ) + 1 ) ) - ( b ` 1 ) ) ) = ( b ` ( ( K - 1 ) + 1 ) ) ) |
501 |
500 497
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + ( ( b ` ( ( K - 1 ) + 1 ) ) - ( b ` 1 ) ) ) = ( b ` K ) ) |
502 |
494 501
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( 1 ... ( K - 1 ) ) ( ( b ` ( i + 1 ) ) - ( b ` i ) ) ) = ( b ` K ) ) |
503 |
471 502
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ s e. ( 1 ... ( K - 1 ) ) ( ( b ` ( s + 1 ) ) - ( b ` s ) ) ) = ( b ` K ) ) |
504 |
461 503
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` ( ( i - 1 ) + 1 ) ) - ( b ` ( i - 1 ) ) ) ) = ( b ` K ) ) |
505 |
420 504
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... ( ( K - 1 ) + 1 ) ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( b ` K ) ) |
506 |
409 505
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... K ) ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( b ` K ) ) |
507 |
403 506
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( b ` 1 ) + sum_ i e. ( ( 1 + 1 ) ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) ) = ( b ` K ) ) |
508 |
389 507
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) = ( b ` K ) ) |
509 |
|
fsumconst |
|- ( ( ( 1 ... K ) e. Fin /\ 1 e. CC ) -> sum_ i e. ( 1 ... K ) 1 = ( ( # ` ( 1 ... K ) ) x. 1 ) ) |
510 |
347 69 509
|
syl2anc |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) 1 = ( ( # ` ( 1 ... K ) ) x. 1 ) ) |
511 |
213
|
nnnn0d |
|- ( ( ph /\ b e. B ) -> K e. NN0 ) |
512 |
|
hashfz1 |
|- ( K e. NN0 -> ( # ` ( 1 ... K ) ) = K ) |
513 |
511 512
|
syl |
|- ( ( ph /\ b e. B ) -> ( # ` ( 1 ... K ) ) = K ) |
514 |
513
|
oveq1d |
|- ( ( ph /\ b e. B ) -> ( ( # ` ( 1 ... K ) ) x. 1 ) = ( K x. 1 ) ) |
515 |
404
|
mulid1d |
|- ( ( ph /\ b e. B ) -> ( K x. 1 ) = K ) |
516 |
514 515
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( # ` ( 1 ... K ) ) x. 1 ) = K ) |
517 |
510 516
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) 1 = K ) |
518 |
508 517
|
oveq12d |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - sum_ i e. ( 1 ... K ) 1 ) = ( ( b ` K ) - K ) ) |
519 |
386 518
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( ( b ` K ) - K ) ) |
520 |
44
|
addid2d |
|- ( ( ph /\ b e. B ) -> ( 0 + ( b ` K ) ) = ( b ` K ) ) |
521 |
520
|
eqcomd |
|- ( ( ph /\ b e. B ) -> ( b ` K ) = ( 0 + ( b ` K ) ) ) |
522 |
521
|
oveq1d |
|- ( ( ph /\ b e. B ) -> ( ( b ` K ) - K ) = ( ( 0 + ( b ` K ) ) - K ) ) |
523 |
519 522
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( ( 0 + ( b ` K ) ) - K ) ) |
524 |
|
0cnd |
|- ( ( ph /\ b e. B ) -> 0 e. CC ) |
525 |
524 404 44
|
subsub3d |
|- ( ( ph /\ b e. B ) -> ( 0 - ( K - ( b ` K ) ) ) = ( ( 0 + ( b ` K ) ) - K ) ) |
526 |
525
|
eqcomd |
|- ( ( ph /\ b e. B ) -> ( ( 0 + ( b ` K ) ) - K ) = ( 0 - ( K - ( b ` K ) ) ) ) |
527 |
523 526
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( 0 - ( K - ( b ` K ) ) ) ) |
528 |
14
|
zcnd |
|- ( ( ph /\ b e. B ) -> N e. CC ) |
529 |
528
|
subidd |
|- ( ( ph /\ b e. B ) -> ( N - N ) = 0 ) |
530 |
529
|
eqcomd |
|- ( ( ph /\ b e. B ) -> 0 = ( N - N ) ) |
531 |
530
|
oveq1d |
|- ( ( ph /\ b e. B ) -> ( 0 - ( K - ( b ` K ) ) ) = ( ( N - N ) - ( K - ( b ` K ) ) ) ) |
532 |
527 531
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( ( N - N ) - ( K - ( b ` K ) ) ) ) |
533 |
404 44
|
subcld |
|- ( ( ph /\ b e. B ) -> ( K - ( b ` K ) ) e. CC ) |
534 |
528 528 533
|
subsub4d |
|- ( ( ph /\ b e. B ) -> ( ( N - N ) - ( K - ( b ` K ) ) ) = ( N - ( N + ( K - ( b ` K ) ) ) ) ) |
535 |
532 534
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( N - ( N + ( K - ( b ` K ) ) ) ) ) |
536 |
528 404 44
|
addsubassd |
|- ( ( ph /\ b e. B ) -> ( ( N + K ) - ( b ` K ) ) = ( N + ( K - ( b ` K ) ) ) ) |
537 |
536
|
eqcomd |
|- ( ( ph /\ b e. B ) -> ( N + ( K - ( b ` K ) ) ) = ( ( N + K ) - ( b ` K ) ) ) |
538 |
537
|
oveq2d |
|- ( ( ph /\ b e. B ) -> ( N - ( N + ( K - ( b ` K ) ) ) ) = ( N - ( ( N + K ) - ( b ` K ) ) ) ) |
539 |
535 538
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( N - ( ( N + K ) - ( b ` K ) ) ) ) |
540 |
|
1zzd |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> 1 e. ZZ ) |
541 |
383 540
|
zsubcld |
|- ( ( ( ph /\ b e. B ) /\ i e. ( 1 ... K ) ) -> ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) e. ZZ ) |
542 |
347 541
|
fsumzcl |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) e. ZZ ) |
543 |
542
|
zcnd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) e. CC ) |
544 |
55
|
nn0cnd |
|- ( ( ph /\ b e. B ) -> ( ( N + K ) - ( b ` K ) ) e. CC ) |
545 |
543 544 528
|
addlsub |
|- ( ( ph /\ b e. B ) -> ( ( sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) + ( ( N + K ) - ( b ` K ) ) ) = N <-> sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) = ( N - ( ( N + K ) - ( b ` K ) ) ) ) ) |
546 |
539 545
|
mpbird |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) ( if ( i = 1 , ( b ` 1 ) , ( ( b ` i ) - ( b ` ( i - 1 ) ) ) ) - 1 ) + ( ( N + K ) - ( b ` K ) ) ) = N ) |
547 |
346 546
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) + ( ( N + K ) - ( b ` K ) ) ) = N ) |
548 |
329 547
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) + ( ( N + K ) - ( b ` K ) ) ) = N ) |
549 |
314 548
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( sum_ i e. ( 1 ... K ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) + if ( ( K + 1 ) = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( ( K + 1 ) = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` ( K + 1 ) ) - ( b ` ( ( K + 1 ) - 1 ) ) ) - 1 ) ) ) ) = N ) |
550 |
311 549
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) if ( i = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( i = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` i ) - ( b ` ( i - 1 ) ) ) - 1 ) ) ) = N ) |
551 |
212 550
|
eqtrd |
|- ( ( ph /\ b e. B ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) |
552 |
194 551
|
jca |
|- ( ( ph /\ b e. B ) -> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) |
553 |
|
ovex |
|- ( 1 ... ( K + 1 ) ) e. _V |
554 |
553
|
mptex |
|- ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) e. _V |
555 |
|
feq1 |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( g : ( 1 ... ( K + 1 ) ) --> NN0 <-> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 ) ) |
556 |
|
simpl |
|- ( ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) |
557 |
556
|
fveq1d |
|- ( ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) /\ i e. ( 1 ... ( K + 1 ) ) ) -> ( g ` i ) = ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) ) |
558 |
557
|
sumeq2dv |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) -> sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) ) |
559 |
558
|
eqeq1d |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N <-> sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) |
560 |
555 559
|
anbi12d |
|- ( g = ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) -> ( ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) <-> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) ) |
561 |
554 560
|
elab |
|- ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } <-> ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ` i ) = N ) ) |
562 |
552 561
|
sylibr |
|- ( ( ph /\ b e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) e. { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
563 |
4
|
a1i |
|- ( ( ph /\ b e. B ) -> A = { g | ( g : ( 1 ... ( K + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( K + 1 ) ) ( g ` i ) = N ) } ) |
564 |
562 563
|
eleqtrrd |
|- ( ( ph /\ b e. B ) -> ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) e. A ) |
565 |
10 564
|
eqeltrrd |
|- ( ( ph /\ b e. B ) -> if ( K = 0 , { <. 1 , N >. } , ( k e. ( 1 ... ( K + 1 ) ) |-> if ( k = ( K + 1 ) , ( ( N + K ) - ( b ` K ) ) , if ( k = 1 , ( ( b ` 1 ) - 1 ) , ( ( ( b ` k ) - ( b ` ( k - 1 ) ) ) - 1 ) ) ) ) ) e. A ) |
566 |
565 3
|
fmptd |
|- ( ph -> G : B --> A ) |