| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones10.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones10.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
sticksstones10.3 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 4 |
|
sticksstones10.4 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
| 5 |
|
sticksstones10.5 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
| 6 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ≠ 0 ) |
| 8 |
7
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝐾 = 0 ) |
| 9 |
8
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
| 11 |
|
eleq1 |
⊢ ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) → ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℕ0 ↔ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) ) |
| 12 |
|
eleq1 |
⊢ ( if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) → ( if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ↔ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) ) |
| 13 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) |
| 15 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ℤ ) |
| 17 |
14 16
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
| 18 |
5
|
eleq2i |
⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 19 |
|
vex |
⊢ 𝑏 ∈ V |
| 20 |
|
feq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
| 21 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 22 |
|
fveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑦 ) ) |
| 23 |
21 22
|
breq12d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 25 |
24
|
2ralbidv |
⊢ ( 𝑓 = 𝑏 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 26 |
20 25
|
anbi12d |
⊢ ( 𝑓 = 𝑏 → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) ) |
| 27 |
19 26
|
elab |
⊢ ( 𝑏 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 28 |
18 27
|
bitri |
⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 29 |
28
|
biimpi |
⊢ ( 𝑏 ∈ 𝐵 → ( 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 32 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ℤ ) |
| 33 |
2
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐾 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ≤ 𝐾 ) |
| 35 |
16
|
zred |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ℝ ) |
| 36 |
35
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ≤ 𝐾 ) |
| 37 |
32 16 16 34 36
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ( 1 ... 𝐾 ) ) |
| 38 |
31 37
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 39 |
|
elfznn |
⊢ ( ( 𝑏 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝐾 ) ∈ ℕ ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ∈ ℕ ) |
| 41 |
40
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ∈ ℤ ) |
| 42 |
17 41
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℤ ) |
| 43 |
40
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ∈ ℝ ) |
| 44 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ∈ ℂ ) |
| 45 |
44
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 𝐾 ) + 0 ) = ( 𝑏 ‘ 𝐾 ) ) |
| 46 |
|
elfzle2 |
⊢ ( ( 𝑏 ‘ 𝐾 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 47 |
38 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 48 |
45 47
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 𝐾 ) + 0 ) ≤ ( 𝑁 + 𝐾 ) ) |
| 49 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ∈ ℝ ) |
| 50 |
17
|
zred |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑁 + 𝐾 ) ∈ ℝ ) |
| 51 |
43 49 50
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑏 ‘ 𝐾 ) + 0 ) ≤ ( 𝑁 + 𝐾 ) ↔ 0 ≤ ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 52 |
48 51
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) |
| 53 |
42 52
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 54 |
|
elnn0z |
⊢ ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℕ0 ↔ ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 55 |
53 54
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 57 |
56
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 59 |
|
eleq1 |
⊢ ( ( ( 𝑏 ‘ 1 ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ↔ if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) ) |
| 60 |
|
eleq1 |
⊢ ( ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ↔ if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) ) |
| 61 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ℝ ) |
| 62 |
61
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ≤ 1 ) |
| 63 |
32 16 32 62 34
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 64 |
31 63
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 65 |
|
elfznn |
⊢ ( ( 𝑏 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 1 ) ∈ ℕ ) |
| 66 |
65
|
nnzd |
⊢ ( ( 𝑏 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 1 ) ∈ ℤ ) |
| 67 |
64 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) ∈ ℤ ) |
| 68 |
67 32
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℤ ) |
| 69 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ℂ ) |
| 70 |
69
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 + 0 ) = 1 ) |
| 71 |
|
elfzle1 |
⊢ ( ( 𝑏 ‘ 1 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → 1 ≤ ( 𝑏 ‘ 1 ) ) |
| 72 |
64 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 1 ≤ ( 𝑏 ‘ 1 ) ) |
| 73 |
70 72
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 + 0 ) ≤ ( 𝑏 ‘ 1 ) ) |
| 74 |
67
|
zred |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) ∈ ℝ ) |
| 75 |
61 49 74
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 1 + 0 ) ≤ ( 𝑏 ‘ 1 ) ↔ 0 ≤ ( ( 𝑏 ‘ 1 ) − 1 ) ) ) |
| 76 |
73 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ ( ( 𝑏 ‘ 1 ) − 1 ) ) |
| 77 |
68 76
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑏 ‘ 1 ) − 1 ) ) ) |
| 78 |
|
elnn0z |
⊢ ( ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ↔ ( ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑏 ‘ 1 ) − 1 ) ) ) |
| 79 |
77 78
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 81 |
80
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 82 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℕ0 ) |
| 84 |
31
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 86 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ∈ ℤ ) |
| 87 |
16
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
| 89 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 90 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 92 |
91
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 93 |
92
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 94 |
92
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ≤ 𝑘 ) |
| 95 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 96 |
89 95
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ ( 𝐾 + 1 ) ) |
| 98 |
|
neqne |
⊢ ( ¬ 𝑘 = ( 𝐾 + 1 ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 99 |
98
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≠ ( 𝐾 + 1 ) ) |
| 100 |
99
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ≠ 𝑘 ) |
| 101 |
97 100
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑘 ) ) |
| 102 |
92
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ℝ ) |
| 103 |
88
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℝ ) |
| 104 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 1 ∈ ℝ ) |
| 105 |
103 104
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 106 |
102 105
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 < ( 𝐾 + 1 ) ↔ ( 𝑘 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑘 ) ) ) |
| 107 |
101 106
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 < ( 𝐾 + 1 ) ) |
| 108 |
91
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 109 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 110 |
108 87 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 ≤ 𝐾 ↔ 𝑘 < ( 𝐾 + 1 ) ) ) |
| 112 |
107 111
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ≤ 𝐾 ) |
| 113 |
86 88 93 94 112
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
| 114 |
85 113
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑏 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 115 |
|
elfznn |
⊢ ( ( 𝑏 ‘ 𝑘 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑘 ) ∈ ℕ ) |
| 116 |
114 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑏 ‘ 𝑘 ) ∈ ℕ ) |
| 117 |
116
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑏 ‘ 𝑘 ) ∈ ℤ ) |
| 118 |
117
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ 𝑘 ) ∈ ℤ ) |
| 119 |
85
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 120 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 121 |
88
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐾 ∈ ℤ ) |
| 122 |
93
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℤ ) |
| 123 |
122 120
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 124 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ 𝑘 ) |
| 125 |
|
neqne |
⊢ ( ¬ 𝑘 = 1 → 𝑘 ≠ 1 ) |
| 126 |
125
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
| 127 |
124 126
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ≤ 𝑘 ∧ 𝑘 ≠ 1 ) ) |
| 128 |
104
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℝ ) |
| 129 |
102
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℝ ) |
| 130 |
128 129
|
ltlend |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≠ 1 ) ) ) |
| 131 |
127 130
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 < 𝑘 ) |
| 132 |
120 122
|
zltlem1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 < 𝑘 ↔ 1 ≤ ( 𝑘 − 1 ) ) ) |
| 133 |
131 132
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( 𝑘 − 1 ) ) |
| 134 |
91
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 135 |
61
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 1 ∈ ℝ ) |
| 136 |
35
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 137 |
|
lesubadd |
⊢ ( ( 𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑘 − 1 ) ≤ 𝐾 ↔ 𝑘 ≤ ( 𝐾 + 1 ) ) ) |
| 138 |
134 135 136 137
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑘 − 1 ) ≤ 𝐾 ↔ 𝑘 ≤ ( 𝐾 + 1 ) ) ) |
| 139 |
96 138
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
| 140 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
| 141 |
140
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ 𝐾 ) |
| 142 |
120 121 123 133 141
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 143 |
119 142
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 144 |
|
elfznn |
⊢ ( ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
| 145 |
143 144
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ℕ ) |
| 146 |
145
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ℤ ) |
| 147 |
118 146
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
| 148 |
147 120
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ) |
| 149 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 150 |
149
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 0 + 1 ) = 1 ) |
| 151 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℂ ) |
| 152 |
151
|
subidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 − 1 ) = 0 ) |
| 153 |
146
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ℝ ) |
| 154 |
153
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 155 |
154
|
addridd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑏 ‘ ( 𝑘 − 1 ) ) + 0 ) = ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) |
| 156 |
129
|
ltm1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) < 𝑘 ) |
| 157 |
113
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( 1 ... 𝐾 ) ) |
| 158 |
142 157
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ) |
| 159 |
30
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) |
| 160 |
159
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) |
| 161 |
160
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) |
| 162 |
161
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) |
| 163 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( 𝑥 < 𝑦 ↔ ( 𝑘 − 1 ) < 𝑦 ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) |
| 165 |
164
|
breq1d |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ↔ ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑦 ) ) ) |
| 166 |
163 165
|
imbi12d |
⊢ ( 𝑥 = ( 𝑘 − 1 ) → ( ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ↔ ( ( 𝑘 − 1 ) < 𝑦 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑦 ) ) ) ) |
| 167 |
|
breq2 |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 − 1 ) < 𝑦 ↔ ( 𝑘 − 1 ) < 𝑘 ) ) |
| 168 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑏 ‘ 𝑦 ) = ( 𝑏 ‘ 𝑘 ) ) |
| 169 |
168
|
breq2d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑦 ) ↔ ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑘 ) ) ) |
| 170 |
167 169
|
imbi12d |
⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑘 − 1 ) < 𝑦 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑦 ) ) ↔ ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 171 |
166 170
|
rspc2va |
⊢ ( ( ( ( 𝑘 − 1 ) ∈ ( 1 ... 𝐾 ) ∧ 𝑘 ∈ ( 1 ... 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑏 ‘ 𝑥 ) < ( 𝑏 ‘ 𝑦 ) ) ) → ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑘 ) ) ) |
| 172 |
158 162 171
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) < 𝑘 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑘 ) ) ) |
| 173 |
156 172
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) < ( 𝑏 ‘ 𝑘 ) ) |
| 174 |
155 173
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑏 ‘ ( 𝑘 − 1 ) ) + 0 ) < ( 𝑏 ‘ 𝑘 ) ) |
| 175 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 ∈ ℝ ) |
| 176 |
118
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑏 ‘ 𝑘 ) ∈ ℝ ) |
| 177 |
153 175 176
|
ltaddsub2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑏 ‘ ( 𝑘 − 1 ) ) + 0 ) < ( 𝑏 ‘ 𝑘 ) ↔ 0 < ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 178 |
174 177
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 < ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) |
| 179 |
152 178
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 − 1 ) < ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) |
| 180 |
|
zlem1lt |
⊢ ( ( 1 ∈ ℤ ∧ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ℤ ) → ( 1 ≤ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 1 − 1 ) < ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 181 |
120 147 180
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 ≤ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 1 − 1 ) < ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 182 |
179 181
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ≤ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) |
| 183 |
150 182
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( 0 + 1 ) ≤ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) |
| 184 |
147
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ℝ ) |
| 185 |
|
leaddsub |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ℝ ) → ( ( 0 + 1 ) ≤ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ↔ 0 ≤ ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 186 |
175 128 184 185
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 0 + 1 ) ≤ ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ↔ 0 ≤ ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 187 |
183 186
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → 0 ≤ ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) |
| 188 |
148 187
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 189 |
|
elnn0z |
⊢ ( ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ↔ ( ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℤ ∧ 0 ≤ ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) |
| 190 |
188 189
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ∈ ℕ0 ) |
| 191 |
59 60 83 190
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑘 = ( 𝐾 + 1 ) ) → if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ∈ ℕ0 ) |
| 192 |
11 12 58 191
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 193 |
192
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 194 |
193
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
| 195 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 196 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → 𝑘 = 𝑖 ) |
| 197 |
196
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = ( 𝐾 + 1 ) ↔ 𝑖 = ( 𝐾 + 1 ) ) ) |
| 198 |
196
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑘 = 1 ↔ 𝑖 = 1 ) ) |
| 199 |
196
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑏 ‘ 𝑘 ) = ( 𝑏 ‘ 𝑖 ) ) |
| 200 |
196
|
fvoveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) |
| 201 |
199 200
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 202 |
201
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) = ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) |
| 203 |
198 202
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) = if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
| 204 |
197 203
|
ifbieq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
| 205 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 206 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ V ) |
| 207 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ V ) |
| 208 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ∈ V ) |
| 209 |
207 208
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ V ) |
| 210 |
206 209
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ V ) |
| 211 |
195 204 205 210
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
| 212 |
211
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ) |
| 213 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ℕ ) |
| 214 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 215 |
213 214
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
| 216 |
|
eleq1 |
⊢ ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) → ( ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℤ ↔ if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) ) |
| 217 |
|
eleq1 |
⊢ ( if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) → ( if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ ℤ ↔ if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) ) |
| 218 |
14
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 219 |
218
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 = ( 𝐾 + 1 ) ) → 𝑁 ∈ ℤ ) |
| 220 |
16
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 221 |
220
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
| 222 |
219 221
|
zaddcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
| 223 |
40
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑏 ‘ 𝐾 ) ∈ ℕ ) |
| 224 |
223
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑏 ‘ 𝐾 ) ∈ ℕ ) |
| 225 |
224
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑏 ‘ 𝐾 ) ∈ ℤ ) |
| 226 |
222 225
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ 𝑖 = ( 𝐾 + 1 ) ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℤ ) |
| 227 |
|
eleq1 |
⊢ ( ( ( 𝑏 ‘ 1 ) − 1 ) = if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℤ ↔ if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
| 228 |
|
eleq1 |
⊢ ( ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ∈ ℤ ↔ if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ ℤ ) ) |
| 229 |
67
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑏 ‘ 1 ) ∈ ℤ ) |
| 230 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑏 ‘ 1 ) ∈ ℤ ) |
| 231 |
230
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ 𝑖 = 1 ) → ( 𝑏 ‘ 1 ) ∈ ℤ ) |
| 232 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ 𝑖 = 1 ) → 1 ∈ ℤ ) |
| 233 |
231 232
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ 𝑖 = 1 ) → ( ( 𝑏 ‘ 1 ) − 1 ) ∈ ℤ ) |
| 234 |
31
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 235 |
234
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 236 |
235
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 237 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 1 ∈ ℤ ) |
| 238 |
220
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℤ ) |
| 239 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑖 ∈ ℕ ) |
| 240 |
239
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℕ ) |
| 241 |
240
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℕ ) |
| 242 |
241
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 243 |
242
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 ∈ ℤ ) |
| 244 |
241
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 1 ≤ 𝑖 ) |
| 245 |
244
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 1 ≤ 𝑖 ) |
| 246 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) |
| 247 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 248 |
246 247
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 249 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 250 |
|
neqne |
⊢ ( ¬ 𝑖 = ( 𝐾 + 1 ) → 𝑖 ≠ ( 𝐾 + 1 ) ) |
| 251 |
250
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 ≠ ( 𝐾 + 1 ) ) |
| 252 |
251
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ≠ 𝑖 ) |
| 253 |
249 252
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑖 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑖 ) ) |
| 254 |
243
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 ∈ ℝ ) |
| 255 |
238
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝐾 ∈ ℝ ) |
| 256 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 1 ∈ ℝ ) |
| 257 |
255 256
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 258 |
254 257
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑖 < ( 𝐾 + 1 ) ↔ ( 𝑖 ≤ ( 𝐾 + 1 ) ∧ ( 𝐾 + 1 ) ≠ 𝑖 ) ) ) |
| 259 |
253 258
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 < ( 𝐾 + 1 ) ) |
| 260 |
|
zleltp1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑖 ≤ 𝐾 ↔ 𝑖 < ( 𝐾 + 1 ) ) ) |
| 261 |
243 238 260
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → ( 𝑖 ≤ 𝐾 ↔ 𝑖 < ( 𝐾 + 1 ) ) ) |
| 262 |
259 261
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 ≤ 𝐾 ) |
| 263 |
237 238 243 245 262
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → 𝑖 ∈ ( 1 ... 𝐾 ) ) |
| 264 |
263
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ∈ ( 1 ... 𝐾 ) ) |
| 265 |
236 264
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ 𝑖 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 266 |
|
elfznn |
⊢ ( ( 𝑏 ‘ 𝑖 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ ) |
| 267 |
265 266
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ ) |
| 268 |
267
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℤ ) |
| 269 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ∈ ℤ ) |
| 270 |
238
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝐾 ∈ ℤ ) |
| 271 |
243
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ∈ ℤ ) |
| 272 |
271 269
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 − 1 ) ∈ ℤ ) |
| 273 |
245
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ≤ 𝑖 ) |
| 274 |
|
neqne |
⊢ ( ¬ 𝑖 = 1 → 𝑖 ≠ 1 ) |
| 275 |
274
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ≠ 1 ) |
| 276 |
273 275
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 ≤ 𝑖 ∧ 𝑖 ≠ 1 ) ) |
| 277 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ∈ ℝ ) |
| 278 |
271
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ∈ ℝ ) |
| 279 |
277 278
|
ltlend |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 < 𝑖 ↔ ( 1 ≤ 𝑖 ∧ 𝑖 ≠ 1 ) ) ) |
| 280 |
276 279
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 1 < 𝑖 ) |
| 281 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 1 < 𝑖 ↔ ( 1 + 1 ) ≤ 𝑖 ) ) |
| 282 |
269 271 281
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 < 𝑖 ↔ ( 1 + 1 ) ≤ 𝑖 ) ) |
| 283 |
280 282
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 + 1 ) ≤ 𝑖 ) |
| 284 |
|
leaddsub |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( ( 1 + 1 ) ≤ 𝑖 ↔ 1 ≤ ( 𝑖 − 1 ) ) ) |
| 285 |
277 277 278 284
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( 1 + 1 ) ≤ 𝑖 ↔ 1 ≤ ( 𝑖 − 1 ) ) ) |
| 286 |
283 285
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ≤ ( 𝑖 − 1 ) ) |
| 287 |
249
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ≤ ( 𝐾 + 1 ) ) |
| 288 |
255
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → 𝐾 ∈ ℝ ) |
| 289 |
|
lesubadd |
⊢ ( ( 𝑖 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑖 − 1 ) ≤ 𝐾 ↔ 𝑖 ≤ ( 𝐾 + 1 ) ) ) |
| 290 |
278 277 288 289
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( 𝑖 − 1 ) ≤ 𝐾 ↔ 𝑖 ≤ ( 𝐾 + 1 ) ) ) |
| 291 |
287 290
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 − 1 ) ≤ 𝐾 ) |
| 292 |
269 270 272 286 291
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 293 |
236 292
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 294 |
|
elfznn |
⊢ ( ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ℕ ) |
| 295 |
293 294
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ℕ ) |
| 296 |
295
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ℤ ) |
| 297 |
268 296
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ℤ ) |
| 298 |
297 269
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ∈ ℤ ) |
| 299 |
227 228 233 298
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) ∧ ¬ 𝑖 = ( 𝐾 + 1 ) ) → if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ∈ ℤ ) |
| 300 |
216 217 226 299
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) |
| 301 |
300
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ ℤ ) |
| 302 |
301
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) ∈ ℂ ) |
| 303 |
|
eqeq1 |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → ( 𝑖 = ( 𝐾 + 1 ) ↔ ( 𝐾 + 1 ) = ( 𝐾 + 1 ) ) ) |
| 304 |
|
eqeq1 |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → ( 𝑖 = 1 ↔ ( 𝐾 + 1 ) = 1 ) ) |
| 305 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → ( 𝑏 ‘ 𝑖 ) = ( 𝑏 ‘ ( 𝐾 + 1 ) ) ) |
| 306 |
|
fvoveq1 |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) = ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) |
| 307 |
305 306
|
oveq12d |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) = ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) |
| 308 |
307
|
oveq1d |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) |
| 309 |
304 308
|
ifbieq2d |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) |
| 310 |
303 309
|
ifbieq2d |
⊢ ( 𝑖 = ( 𝐾 + 1 ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) |
| 311 |
215 302 310
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) ) |
| 312 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐾 + 1 ) = ( 𝐾 + 1 ) ) |
| 313 |
312
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) |
| 314 |
313
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 315 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝐾 ) → 𝑖 ∈ ℕ ) |
| 316 |
315
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ∈ ℕ ) |
| 317 |
316
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ∈ ℝ ) |
| 318 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝐾 ∈ ℝ ) |
| 319 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℝ ) |
| 320 |
318 319
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 321 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝐾 ) → 𝑖 ≤ 𝐾 ) |
| 322 |
321
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ≤ 𝐾 ) |
| 323 |
318
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝐾 < ( 𝐾 + 1 ) ) |
| 324 |
317 318 320 322 323
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 < ( 𝐾 + 1 ) ) |
| 325 |
317 324
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ≠ ( 𝐾 + 1 ) ) |
| 326 |
325
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ¬ 𝑖 = ( 𝐾 + 1 ) ) |
| 327 |
326
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
| 328 |
327
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) |
| 329 |
328
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 330 |
|
eqeq1 |
⊢ ( ( ( 𝑏 ‘ 1 ) − 1 ) = if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) → ( ( ( 𝑏 ‘ 1 ) − 1 ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ↔ if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) ) |
| 331 |
|
eqeq1 |
⊢ ( ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) → ( ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ↔ if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) ) |
| 332 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → ( ( 𝑏 ‘ 1 ) − 1 ) = ( ( 𝑏 ‘ 1 ) − 1 ) ) |
| 333 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → 𝑖 = 1 ) |
| 334 |
333
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( 𝑏 ‘ 1 ) ) |
| 335 |
334
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → ( 𝑏 ‘ 1 ) = if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 336 |
335
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → ( ( 𝑏 ‘ 1 ) − 1 ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) |
| 337 |
332 336
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → ( ( 𝑏 ‘ 1 ) − 1 ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) |
| 338 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) |
| 339 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ¬ 𝑖 = 1 ) |
| 340 |
339
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 341 |
340
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) |
| 342 |
341
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) |
| 343 |
338 342
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) |
| 344 |
330 331 337 343
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) |
| 345 |
344
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ) |
| 346 |
345
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 347 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
| 348 |
|
eleq1 |
⊢ ( ( 𝑏 ‘ 1 ) = if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) → ( ( 𝑏 ‘ 1 ) ∈ ℤ ↔ if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ∈ ℤ ) ) |
| 349 |
|
eleq1 |
⊢ ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) = if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) → ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ℤ ↔ if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ∈ ℤ ) ) |
| 350 |
67
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑖 = 1 ) → ( 𝑏 ‘ 1 ) ∈ ℤ ) |
| 351 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 352 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ∈ ( 1 ... 𝐾 ) ) |
| 353 |
351 352
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 354 |
266
|
nnzd |
⊢ ( ( 𝑏 ‘ 𝑖 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℤ ) |
| 355 |
353 354
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℤ ) |
| 356 |
355
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℤ ) |
| 357 |
351
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 358 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ∈ ℤ ) |
| 359 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 𝐾 ∈ ℤ ) |
| 360 |
316
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ∈ ℤ ) |
| 361 |
360
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ∈ ℤ ) |
| 362 |
361 358
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 − 1 ) ∈ ℤ ) |
| 363 |
316
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 1 ≤ 𝑖 ) |
| 364 |
363
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ≤ 𝑖 ) |
| 365 |
339 274
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ≠ 1 ) |
| 366 |
364 365
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 ≤ 𝑖 ∧ 𝑖 ≠ 1 ) ) |
| 367 |
319
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ∈ ℝ ) |
| 368 |
317
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 𝑖 ∈ ℝ ) |
| 369 |
367 368
|
ltlend |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 < 𝑖 ↔ ( 1 ≤ 𝑖 ∧ 𝑖 ≠ 1 ) ) ) |
| 370 |
366 369
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 1 < 𝑖 ) |
| 371 |
|
zltlem1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 1 < 𝑖 ↔ 1 ≤ ( 𝑖 − 1 ) ) ) |
| 372 |
358 361 371
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 1 < 𝑖 ↔ 1 ≤ ( 𝑖 − 1 ) ) ) |
| 373 |
370 372
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → 1 ≤ ( 𝑖 − 1 ) ) |
| 374 |
317 319
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑖 − 1 ) ∈ ℝ ) |
| 375 |
317
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑖 − 1 ) ≤ 𝑖 ) |
| 376 |
374 317 318 375 322
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑖 − 1 ) ≤ 𝐾 ) |
| 377 |
376
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 − 1 ) ≤ 𝐾 ) |
| 378 |
358 359 362 373 377
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 − 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 379 |
357 378
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 380 |
379 294
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ℕ ) |
| 381 |
380
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ ℤ ) |
| 382 |
356 381
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ ¬ 𝑖 = 1 ) → ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ℤ ) |
| 383 |
348 349 350 382
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ∈ ℤ ) |
| 384 |
383
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ∈ ℂ ) |
| 385 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℂ ) |
| 386 |
347 384 385
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... 𝐾 ) 1 ) ) |
| 387 |
|
id |
⊢ ( 𝑖 = 1 → 𝑖 = 1 ) |
| 388 |
387
|
iftrued |
⊢ ( 𝑖 = 1 → if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( 𝑏 ‘ 1 ) ) |
| 389 |
215 384 388
|
fsum1p |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) ) |
| 390 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ∈ ℝ ) |
| 391 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) → ( 1 + 1 ) ≤ 𝑖 ) |
| 392 |
391
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ( 1 + 1 ) ≤ 𝑖 ) |
| 393 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 394 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) → 𝑖 ∈ ℤ ) |
| 395 |
394
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 𝑖 ∈ ℤ ) |
| 396 |
393 395 281
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ( 1 < 𝑖 ↔ ( 1 + 1 ) ≤ 𝑖 ) ) |
| 397 |
392 396
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 < 𝑖 ) |
| 398 |
390 397
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 1 ≠ 𝑖 ) |
| 399 |
398
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → 𝑖 ≠ 1 ) |
| 400 |
399
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → ¬ 𝑖 = 1 ) |
| 401 |
400
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ) → if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 402 |
401
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 403 |
402
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 404 |
35
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ℂ ) |
| 405 |
404 69
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 406 |
405
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
| 407 |
406
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 1 + 1 ) ... 𝐾 ) = ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 408 |
407
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) = Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 409 |
408
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 410 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) → 𝑖 ∈ ℤ ) |
| 411 |
410
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 412 |
411
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑖 ∈ ℂ ) |
| 413 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 1 ∈ ℂ ) |
| 414 |
412 413
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑖 − 1 ) + 1 ) = 𝑖 ) |
| 415 |
414
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑖 = ( ( 𝑖 − 1 ) + 1 ) ) |
| 416 |
415
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑏 ‘ 𝑖 ) = ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) ) |
| 417 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) = ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) |
| 418 |
416 417
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) = ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 419 |
418
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) = Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 420 |
419
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 421 |
16 32
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 422 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 423 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℤ ) |
| 424 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 425 |
|
elfznn |
⊢ ( 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑠 ∈ ℕ ) |
| 426 |
425
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℕ ) |
| 427 |
426
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℤ ) |
| 428 |
427
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ℤ ) |
| 429 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℝ ) |
| 430 |
426
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 431 |
430 429
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ℝ ) |
| 432 |
426
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ≤ 𝑠 ) |
| 433 |
430
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ ( 𝑠 + 1 ) ) |
| 434 |
429 430 431 432 433
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 1 ≤ ( 𝑠 + 1 ) ) |
| 435 |
|
elfzle2 |
⊢ ( 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) → 𝑠 ≤ ( 𝐾 − 1 ) ) |
| 436 |
435
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ ( 𝐾 − 1 ) ) |
| 437 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 438 |
|
leaddsub |
⊢ ( ( 𝑠 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑠 + 1 ) ≤ 𝐾 ↔ 𝑠 ≤ ( 𝐾 − 1 ) ) ) |
| 439 |
430 429 437 438
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑠 + 1 ) ≤ 𝐾 ↔ 𝑠 ≤ ( 𝐾 − 1 ) ) ) |
| 440 |
436 439
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ≤ 𝐾 ) |
| 441 |
423 424 428 434 440
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑠 + 1 ) ∈ ( 1 ... 𝐾 ) ) |
| 442 |
422 441
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑏 ‘ ( 𝑠 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 443 |
|
elfznn |
⊢ ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ ( 𝑠 + 1 ) ) ∈ ℕ ) |
| 444 |
442 443
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑏 ‘ ( 𝑠 + 1 ) ) ∈ ℕ ) |
| 445 |
444
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑏 ‘ ( 𝑠 + 1 ) ) ∈ ℤ ) |
| 446 |
437 429
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝐾 − 1 ) ∈ ℝ ) |
| 447 |
437
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝐾 − 1 ) ≤ 𝐾 ) |
| 448 |
430 446 437 436 447
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ≤ 𝐾 ) |
| 449 |
423 424 427 432 448
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → 𝑠 ∈ ( 1 ... 𝐾 ) ) |
| 450 |
422 449
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑏 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 451 |
|
elfznn |
⊢ ( ( 𝑏 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑠 ) ∈ ℕ ) |
| 452 |
451
|
nnzd |
⊢ ( ( 𝑏 ‘ 𝑠 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑠 ) ∈ ℤ ) |
| 453 |
450 452
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( 𝑏 ‘ 𝑠 ) ∈ ℤ ) |
| 454 |
445 453
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) ∈ ℤ ) |
| 455 |
454
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) ∈ ℂ ) |
| 456 |
|
fvoveq1 |
⊢ ( 𝑠 = ( 𝑖 − 1 ) → ( 𝑏 ‘ ( 𝑠 + 1 ) ) = ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) ) |
| 457 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑖 − 1 ) → ( 𝑏 ‘ 𝑠 ) = ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) |
| 458 |
456 457
|
oveq12d |
⊢ ( 𝑠 = ( 𝑖 − 1 ) → ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) = ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 459 |
32 32 421 455 458
|
fsumshft |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) = Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 460 |
459
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 461 |
460
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) ) ) |
| 462 |
|
fvoveq1 |
⊢ ( 𝑠 = 𝑖 → ( 𝑏 ‘ ( 𝑠 + 1 ) ) = ( 𝑏 ‘ ( 𝑖 + 1 ) ) ) |
| 463 |
|
fveq2 |
⊢ ( 𝑠 = 𝑖 → ( 𝑏 ‘ 𝑠 ) = ( 𝑏 ‘ 𝑖 ) ) |
| 464 |
462 463
|
oveq12d |
⊢ ( 𝑠 = 𝑖 → ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) = ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) ) |
| 465 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) |
| 466 |
|
nfcv |
⊢ Ⅎ 𝑠 ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) |
| 467 |
464 465 466
|
cbvsum |
⊢ Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) |
| 468 |
467
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) ) |
| 469 |
468
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) ) = ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) ) ) |
| 470 |
|
fveq2 |
⊢ ( 𝑤 = 𝑖 → ( 𝑏 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑖 ) ) |
| 471 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑖 + 1 ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑏 ‘ ( 𝑖 + 1 ) ) ) |
| 472 |
|
fveq2 |
⊢ ( 𝑤 = 1 → ( 𝑏 ‘ 𝑤 ) = ( 𝑏 ‘ 1 ) ) |
| 473 |
|
fveq2 |
⊢ ( 𝑤 = ( ( 𝐾 − 1 ) + 1 ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 474 |
405 215
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐾 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 475 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑏 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 476 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 1 ∈ ℤ ) |
| 477 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 478 |
|
elfzelz |
⊢ ( 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → 𝑤 ∈ ℤ ) |
| 479 |
478
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑤 ∈ ℤ ) |
| 480 |
|
elfzle1 |
⊢ ( 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → 1 ≤ 𝑤 ) |
| 481 |
480
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 1 ≤ 𝑤 ) |
| 482 |
|
elfzle2 |
⊢ ( 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) → 𝑤 ≤ ( ( 𝐾 − 1 ) + 1 ) ) |
| 483 |
482
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑤 ≤ ( ( 𝐾 − 1 ) + 1 ) ) |
| 484 |
405
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 485 |
483 484
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑤 ≤ 𝐾 ) |
| 486 |
476 477 479 481 485
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → 𝑤 ∈ ( 1 ... 𝐾 ) ) |
| 487 |
475 486
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑏 ‘ 𝑤 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
| 488 |
|
elfznn |
⊢ ( ( 𝑏 ‘ 𝑤 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑤 ) ∈ ℕ ) |
| 489 |
488
|
nncnd |
⊢ ( ( 𝑏 ‘ 𝑤 ) ∈ ( 1 ... ( 𝑁 + 𝐾 ) ) → ( 𝑏 ‘ 𝑤 ) ∈ ℂ ) |
| 490 |
487 489
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑤 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) → ( 𝑏 ‘ 𝑤 ) ∈ ℂ ) |
| 491 |
470 471 472 473 421 474 490
|
telfsum2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑏 ‘ 1 ) ) ) |
| 492 |
491
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) ) = ( ( 𝑏 ‘ 1 ) + ( ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑏 ‘ 1 ) ) ) ) |
| 493 |
74
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 1 ) ∈ ℂ ) |
| 494 |
40
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) ∈ ℂ ) |
| 495 |
405
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 496 |
495
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) ∈ ℂ ↔ ( 𝑏 ‘ 𝐾 ) ∈ ℂ ) ) |
| 497 |
494 496
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) ∈ ℂ ) |
| 498 |
493 497
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + ( ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑏 ‘ 1 ) ) ) = ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 499 |
498 495
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + ( ( 𝑏 ‘ ( ( 𝐾 − 1 ) + 1 ) ) − ( 𝑏 ‘ 1 ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 500 |
492 499
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑖 + 1 ) ) − ( 𝑏 ‘ 𝑖 ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 501 |
469 500
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑠 ∈ ( 1 ... ( 𝐾 − 1 ) ) ( ( 𝑏 ‘ ( 𝑠 + 1 ) ) − ( 𝑏 ‘ 𝑠 ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 502 |
461 501
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ ( ( 𝑖 − 1 ) + 1 ) ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 503 |
420 502
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... ( ( 𝐾 − 1 ) + 1 ) ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 504 |
409 503
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 505 |
403 504
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 1 ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 506 |
389 505
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 507 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) 1 = ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) ) |
| 508 |
347 69 507
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) 1 = ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) ) |
| 509 |
213
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
| 510 |
|
hashfz1 |
⊢ ( 𝐾 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝐾 ) ) = 𝐾 ) |
| 511 |
509 510
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ♯ ‘ ( 1 ... 𝐾 ) ) = 𝐾 ) |
| 512 |
511
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) = ( 𝐾 · 1 ) ) |
| 513 |
404
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐾 · 1 ) = 𝐾 ) |
| 514 |
512 513
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( ♯ ‘ ( 1 ... 𝐾 ) ) · 1 ) = 𝐾 ) |
| 515 |
508 514
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) 1 = 𝐾 ) |
| 516 |
506 515
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... 𝐾 ) 1 ) = ( ( 𝑏 ‘ 𝐾 ) − 𝐾 ) ) |
| 517 |
386 516
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( ( 𝑏 ‘ 𝐾 ) − 𝐾 ) ) |
| 518 |
44
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 0 + ( 𝑏 ‘ 𝐾 ) ) = ( 𝑏 ‘ 𝐾 ) ) |
| 519 |
518
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ‘ 𝐾 ) = ( 0 + ( 𝑏 ‘ 𝐾 ) ) ) |
| 520 |
519
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ‘ 𝐾 ) − 𝐾 ) = ( ( 0 + ( 𝑏 ‘ 𝐾 ) ) − 𝐾 ) ) |
| 521 |
517 520
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( ( 0 + ( 𝑏 ‘ 𝐾 ) ) − 𝐾 ) ) |
| 522 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ∈ ℂ ) |
| 523 |
522 404 44
|
subsub3d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 0 − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) = ( ( 0 + ( 𝑏 ‘ 𝐾 ) ) − 𝐾 ) ) |
| 524 |
523
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 0 + ( 𝑏 ‘ 𝐾 ) ) − 𝐾 ) = ( 0 − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 525 |
521 524
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( 0 − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 526 |
14
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑁 ∈ ℂ ) |
| 527 |
526
|
subidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑁 − 𝑁 ) = 0 ) |
| 528 |
527
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 = ( 𝑁 − 𝑁 ) ) |
| 529 |
528
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 0 − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) = ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 530 |
525 529
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 531 |
404 44
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ∈ ℂ ) |
| 532 |
526 526 531
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑁 − 𝑁 ) − ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) = ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) ) |
| 533 |
530 532
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) ) |
| 534 |
526 404 44
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) = ( 𝑁 + ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 535 |
534
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑁 + ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) = ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) |
| 536 |
535
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑁 − ( 𝑁 + ( 𝐾 − ( 𝑏 ‘ 𝐾 ) ) ) ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 537 |
533 536
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) |
| 538 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 1 ∈ ℤ ) |
| 539 |
383 538
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ∈ ℤ ) |
| 540 |
347 539
|
fsumzcl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ∈ ℤ ) |
| 541 |
540
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) ∈ ℂ ) |
| 542 |
55
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ∈ ℂ ) |
| 543 |
541 542 526
|
addlsub |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) = ( 𝑁 − ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) ) ) |
| 544 |
537 543
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( if ( 𝑖 = 1 , ( 𝑏 ‘ 1 ) , ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − 1 ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) = 𝑁 ) |
| 545 |
346 544
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) = 𝑁 ) |
| 546 |
329 545
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) + ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) ) = 𝑁 ) |
| 547 |
314 546
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) + if ( ( 𝐾 + 1 ) = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( ( 𝐾 + 1 ) = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ ( 𝐾 + 1 ) ) − ( 𝑏 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) − 1 ) ) ) ) = 𝑁 ) |
| 548 |
311 547
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) if ( 𝑖 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑖 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑖 ) − ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − 1 ) ) ) = 𝑁 ) |
| 549 |
212 548
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) |
| 550 |
194 549
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
| 551 |
|
ovex |
⊢ ( 1 ... ( 𝐾 + 1 ) ) ∈ V |
| 552 |
551
|
mptex |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ V |
| 553 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
| 554 |
|
simpl |
⊢ ( ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) |
| 555 |
554
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) ) |
| 556 |
555
|
sumeq2dv |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) ) |
| 557 |
556
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
| 558 |
553 557
|
anbi12d |
⊢ ( 𝑔 = ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
| 559 |
552 558
|
elab |
⊢ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
| 560 |
550 559
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 561 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
| 562 |
560 561
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ∈ 𝐴 ) |
| 563 |
10 562
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ∈ 𝐴 ) |
| 564 |
563 3
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |