Metamath Proof Explorer


Theorem sticksstones11

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024)

Ref Expression
Hypotheses sticksstones11.1 ( 𝜑𝑁 ∈ ℕ0 )
sticksstones11.2 ( 𝜑𝐾 = 0 )
sticksstones11.3 𝐹 = ( 𝑎𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) )
sticksstones11.4 𝐺 = ( 𝑏𝐵 ↦ if ( 𝐾 = 0 , { ⟨ 1 , 𝑁 ⟩ } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) )
sticksstones11.5 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) }
sticksstones11.6 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) }
Assertion sticksstones11 ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 sticksstones11.1 ( 𝜑𝑁 ∈ ℕ0 )
2 sticksstones11.2 ( 𝜑𝐾 = 0 )
3 sticksstones11.3 𝐹 = ( 𝑎𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) )
4 sticksstones11.4 𝐺 = ( 𝑏𝐵 ↦ if ( 𝐾 = 0 , { ⟨ 1 , 𝑁 ⟩ } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) )
5 sticksstones11.5 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) }
6 sticksstones11.6 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) }
7 0nn0 0 ∈ ℕ0
8 7 a1i ( 𝜑 → 0 ∈ ℕ0 )
9 2 8 eqeltrd ( 𝜑𝐾 ∈ ℕ0 )
10 1 9 3 5 6 sticksstones8 ( 𝜑𝐹 : 𝐴𝐵 )
11 1 2 4 5 6 sticksstones9 ( 𝜑𝐺 : 𝐵𝐴 )
12 5 a1i ( 𝜑𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } )
13 nfv 𝑢 𝜑
14 nfcv 𝑢 { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) }
15 nfcv 𝑢 { { ⟨ 1 , 𝑁 ⟩ } }
16 ffn ( 𝑢 : { 1 } ⟶ ℕ0𝑢 Fn { 1 } )
17 16 ad2antrl ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 Fn { 1 } )
18 1nn 1 ∈ ℕ
19 18 a1i ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 1 ∈ ℕ )
20 1 adantr ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑁 ∈ ℕ0 )
21 fnsng ( ( 1 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → { ⟨ 1 , 𝑁 ⟩ } Fn { 1 } )
22 19 20 21 syl2anc ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → { ⟨ 1 , 𝑁 ⟩ } Fn { 1 } )
23 elsni ( 𝑝 ∈ { 1 } → 𝑝 = 1 )
24 23 adantl ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 𝑝 = 1 )
25 simpr ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → 𝑝 = 1 )
26 25 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( 𝑢𝑝 ) = ( 𝑢 ‘ 1 ) )
27 simprl ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ ℕ0 )
28 1ex 1 ∈ V
29 28 snid 1 ∈ { 1 }
30 29 a1i ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 1 ∈ { 1 } )
31 27 30 ffvelrnd ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → ( 𝑢 ‘ 1 ) ∈ ℕ0 )
32 31 nn0cnd ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → ( 𝑢 ‘ 1 ) ∈ ℂ )
33 fveq2 ( 𝑖 = 1 → ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) )
34 33 sumsn ( ( 1 ∈ ℕ ∧ ( 𝑢 ‘ 1 ) ∈ ℂ ) → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) )
35 19 32 34 syl2anc ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) )
36 35 adantr ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) ) → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) )
37 36 eqcomd ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) ) → ( 𝑢 ‘ 1 ) = Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) )
38 simplrr ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) ) → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 )
39 37 38 eqtrd ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) ) → ( 𝑢 ‘ 1 ) = 𝑁 )
40 39 ex ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → ( Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) → ( 𝑢 ‘ 1 ) = 𝑁 ) )
41 35 40 mpd ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → ( 𝑢 ‘ 1 ) = 𝑁 )
42 41 adantr ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( 𝑢 ‘ 1 ) = 𝑁 )
43 18 a1i ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 1 ∈ ℕ )
44 20 adantr ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 𝑁 ∈ ℕ0 )
45 fvsng ( ( 1 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) = 𝑁 )
46 43 44 45 syl2anc ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) = 𝑁 )
47 46 eqcomd ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 𝑁 = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) )
48 42 47 eqtrd ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( 𝑢 ‘ 1 ) = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) )
49 48 adantr ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( 𝑢 ‘ 1 ) = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) )
50 25 eqcomd ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → 1 = 𝑝 )
51 50 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 𝑝 ) )
52 26 49 51 3eqtrd ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( 𝑢𝑝 ) = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 𝑝 ) )
53 24 52 mpdan ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( 𝑢𝑝 ) = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 𝑝 ) )
54 17 22 53 eqfnfvd ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 = { ⟨ 1 , 𝑁 ⟩ } )
55 fsng ( ( 1 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑢 : { 1 } ⟶ { 𝑁 } ↔ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) )
56 19 20 55 syl2anc ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → ( 𝑢 : { 1 } ⟶ { 𝑁 } ↔ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) )
57 54 56 mpbird ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ { 𝑁 } )
58 ssidd ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → { 𝑁 } ⊆ { 𝑁 } )
59 fss ( ( 𝑢 : { 1 } ⟶ { 𝑁 } ∧ { 𝑁 } ⊆ { 𝑁 } ) → 𝑢 : { 1 } ⟶ { 𝑁 } )
60 57 58 59 syl2anc ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ { 𝑁 } )
61 60 58 59 syl2anc ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ { 𝑁 } )
62 61 56 mpbid ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 = { ⟨ 1 , 𝑁 ⟩ } )
63 vex 𝑢 ∈ V
64 63 elsn ( 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ↔ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } )
65 62 64 sylibr ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } )
66 65 ex ( 𝜑 → ( ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) )
67 1zzd ( 𝜑 → 1 ∈ ℤ )
68 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
69 67 68 syl ( 𝜑 → ( 1 ... 1 ) = { 1 } )
70 69 eqcomd ( 𝜑 → { 1 } = ( 1 ... 1 ) )
71 1e0p1 1 = ( 0 + 1 )
72 71 a1i ( 𝜑 → 1 = ( 0 + 1 ) )
73 72 oveq2d ( 𝜑 → ( 1 ... 1 ) = ( 1 ... ( 0 + 1 ) ) )
74 70 73 eqtrd ( 𝜑 → { 1 } = ( 1 ... ( 0 + 1 ) ) )
75 2 eqcomd ( 𝜑 → 0 = 𝐾 )
76 75 oveq1d ( 𝜑 → ( 0 + 1 ) = ( 𝐾 + 1 ) )
77 76 oveq2d ( 𝜑 → ( 1 ... ( 0 + 1 ) ) = ( 1 ... ( 𝐾 + 1 ) ) )
78 74 77 eqtrd ( 𝜑 → { 1 } = ( 1 ... ( 𝐾 + 1 ) ) )
79 78 feq2d ( 𝜑 → ( 𝑢 : { 1 } ⟶ ℕ0𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) )
80 78 sumeq1d ( 𝜑 → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) )
81 80 eqeq1d ( 𝜑 → ( Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) )
82 79 81 anbi12d ( 𝜑 → ( ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) ) )
83 82 imbi1d ( 𝜑 → ( ( ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) ↔ ( ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) ) )
84 66 83 mpbid ( 𝜑 → ( ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) )
85 feq1 ( 𝑔 = 𝑢 → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) )
86 simpl ( ( 𝑔 = 𝑢𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = 𝑢 )
87 86 fveq1d ( ( 𝑔 = 𝑢𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔𝑖 ) = ( 𝑢𝑖 ) )
88 87 sumeq2dv ( 𝑔 = 𝑢 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) )
89 88 eqeq1d ( 𝑔 = 𝑢 → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) )
90 85 89 anbi12d ( 𝑔 = 𝑢 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) ) )
91 63 90 elab ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) )
92 91 a1i ( 𝜑 → ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) ) )
93 92 imbi1d ( 𝜑 → ( ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) ↔ ( ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) ) )
94 84 93 mpbird ( 𝜑 → ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) )
95 94 imp ( ( 𝜑𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ) → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } )
96 95 ex ( 𝜑 → ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } → 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) )
97 13 14 15 96 ssrd ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ⊆ { { ⟨ 1 , 𝑁 ⟩ } } )
98 18 a1i ( 𝜑 → 1 ∈ ℕ )
99 98 1 55 syl2anc ( 𝜑 → ( 𝑢 : { 1 } ⟶ { 𝑁 } ↔ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) )
100 99 bicomd ( 𝜑 → ( 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ↔ 𝑢 : { 1 } ⟶ { 𝑁 } ) )
101 100 biimpd ( 𝜑 → ( 𝑢 = { ⟨ 1 , 𝑁 ⟩ } → 𝑢 : { 1 } ⟶ { 𝑁 } ) )
102 elsni ( 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } → 𝑢 = { ⟨ 1 , 𝑁 ⟩ } )
103 101 102 impel ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → 𝑢 : { 1 } ⟶ { 𝑁 } )
104 1 snssd ( 𝜑 → { 𝑁 } ⊆ ℕ0 )
105 104 adantr ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → { 𝑁 } ⊆ ℕ0 )
106 fss ( ( 𝑢 : { 1 } ⟶ { 𝑁 } ∧ { 𝑁 } ⊆ ℕ0 ) → 𝑢 : { 1 } ⟶ ℕ0 )
107 103 105 106 syl2anc ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → 𝑢 : { 1 } ⟶ ℕ0 )
108 79 adantr ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → ( 𝑢 : { 1 } ⟶ ℕ0𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) )
109 107 108 mpbid ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 )
110 102 adantl ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → 𝑢 = { ⟨ 1 , 𝑁 ⟩ } )
111 78 3ad2ant1 ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → { 1 } = ( 1 ... ( 𝐾 + 1 ) ) )
112 111 eqcomd ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → ( 1 ... ( 𝐾 + 1 ) ) = { 1 } )
113 112 sumeq1d ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) )
114 18 a1i ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → 1 ∈ ℕ )
115 1 3ad2ant1 ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → 𝑁 ∈ ℕ0 )
116 115 nn0cnd ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → 𝑁 ∈ ℂ )
117 114 115 45 syl2anc ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) = 𝑁 )
118 117 eqcomd ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → 𝑁 = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) )
119 110 3adant3 ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → 𝑢 = { ⟨ 1 , 𝑁 ⟩ } )
120 119 fveq1d ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → ( 𝑢 ‘ 1 ) = ( { ⟨ 1 , 𝑁 ⟩ } ‘ 1 ) )
121 118 120 eqtr4d ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → 𝑁 = ( 𝑢 ‘ 1 ) )
122 121 eleq1d ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → ( 𝑁 ∈ ℂ ↔ ( 𝑢 ‘ 1 ) ∈ ℂ ) )
123 116 122 mpbid ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → ( 𝑢 ‘ 1 ) ∈ ℂ )
124 114 123 34 syl2anc ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = ( 𝑢 ‘ 1 ) )
125 120 117 eqtrd ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → ( 𝑢 ‘ 1 ) = 𝑁 )
126 124 125 eqtrd ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → Σ 𝑖 ∈ { 1 } ( 𝑢𝑖 ) = 𝑁 )
127 113 126 eqtrd ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 )
128 127 3expa ( ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) ∧ 𝑢 = { ⟨ 1 , 𝑁 ⟩ } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 )
129 110 128 mpdan ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 )
130 109 129 jca ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢𝑖 ) = 𝑁 ) )
131 130 91 sylibr ( ( 𝜑𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) → 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } )
132 131 ex ( 𝜑 → ( 𝑢 ∈ { { ⟨ 1 , 𝑁 ⟩ } } → 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } ) )
133 13 15 14 132 ssrd ( 𝜑 → { { ⟨ 1 , 𝑁 ⟩ } } ⊆ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } )
134 97 133 eqssd ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔𝑖 ) = 𝑁 ) } = { { ⟨ 1 , 𝑁 ⟩ } } )
135 12 134 eqtrd ( 𝜑𝐴 = { { ⟨ 1 , 𝑁 ⟩ } } )
136 eqss ( 𝐴 = { { ⟨ 1 , 𝑁 ⟩ } } ↔ ( 𝐴 ⊆ { { ⟨ 1 , 𝑁 ⟩ } } ∧ { { ⟨ 1 , 𝑁 ⟩ } } ⊆ 𝐴 ) )
137 136 biimpi ( 𝐴 = { { ⟨ 1 , 𝑁 ⟩ } } → ( 𝐴 ⊆ { { ⟨ 1 , 𝑁 ⟩ } } ∧ { { ⟨ 1 , 𝑁 ⟩ } } ⊆ 𝐴 ) )
138 137 simpld ( 𝐴 = { { ⟨ 1 , 𝑁 ⟩ } } → 𝐴 ⊆ { { ⟨ 1 , 𝑁 ⟩ } } )
139 135 138 syl ( 𝜑𝐴 ⊆ { { ⟨ 1 , 𝑁 ⟩ } } )
140 fss ( ( 𝐺 : 𝐵𝐴𝐴 ⊆ { { ⟨ 1 , 𝑁 ⟩ } } ) → 𝐺 : 𝐵 ⟶ { { ⟨ 1 , 𝑁 ⟩ } } )
141 11 139 140 syl2anc ( 𝜑𝐺 : 𝐵 ⟶ { { ⟨ 1 , 𝑁 ⟩ } } )
142 141 adantr ( ( 𝜑𝑐𝐴 ) → 𝐺 : 𝐵 ⟶ { { ⟨ 1 , 𝑁 ⟩ } } )
143 10 ffvelrnda ( ( 𝜑𝑐𝐴 ) → ( 𝐹𝑐 ) ∈ 𝐵 )
144 fvconst ( ( 𝐺 : 𝐵 ⟶ { { ⟨ 1 , 𝑁 ⟩ } } ∧ ( 𝐹𝑐 ) ∈ 𝐵 ) → ( 𝐺 ‘ ( 𝐹𝑐 ) ) = { ⟨ 1 , 𝑁 ⟩ } )
145 142 143 144 syl2anc ( ( 𝜑𝑐𝐴 ) → ( 𝐺 ‘ ( 𝐹𝑐 ) ) = { ⟨ 1 , 𝑁 ⟩ } )
146 135 eleq2d ( 𝜑 → ( 𝑐𝐴𝑐 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) )
147 146 biimpd ( 𝜑 → ( 𝑐𝐴𝑐 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ) )
148 147 imp ( ( 𝜑𝑐𝐴 ) → 𝑐 ∈ { { ⟨ 1 , 𝑁 ⟩ } } )
149 vex 𝑐 ∈ V
150 149 elsn ( 𝑐 ∈ { { ⟨ 1 , 𝑁 ⟩ } } ↔ 𝑐 = { ⟨ 1 , 𝑁 ⟩ } )
151 148 150 sylib ( ( 𝜑𝑐𝐴 ) → 𝑐 = { ⟨ 1 , 𝑁 ⟩ } )
152 151 eqcomd ( ( 𝜑𝑐𝐴 ) → { ⟨ 1 , 𝑁 ⟩ } = 𝑐 )
153 145 152 eqtrd ( ( 𝜑𝑐𝐴 ) → ( 𝐺 ‘ ( 𝐹𝑐 ) ) = 𝑐 )
154 153 ralrimiva ( 𝜑 → ∀ 𝑐𝐴 ( 𝐺 ‘ ( 𝐹𝑐 ) ) = 𝑐 )
155 simpr ( ( 𝜑𝑑𝐵 ) → 𝑑𝐵 )
156 nfv 𝑑 𝜑
157 nfcv 𝑑 𝐵
158 nfcv 𝑑 { ∅ }
159 6 a1i ( ( 𝜑𝑑𝐵 ) → 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } )
160 159 eleq2d ( ( 𝜑𝑑𝐵 ) → ( 𝑑𝐵𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ) )
161 160 biimpd ( ( 𝜑𝑑𝐵 ) → ( 𝑑𝐵𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ) )
162 161 syldbl2 ( ( 𝜑𝑑𝐵 ) → 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } )
163 vex 𝑑 ∈ V
164 feq1 ( 𝑓 = 𝑑 → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) )
165 fveq1 ( 𝑓 = 𝑑 → ( 𝑓𝑥 ) = ( 𝑑𝑥 ) )
166 fveq1 ( 𝑓 = 𝑑 → ( 𝑓𝑦 ) = ( 𝑑𝑦 ) )
167 165 166 breq12d ( 𝑓 = 𝑑 → ( ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ↔ ( 𝑑𝑥 ) < ( 𝑑𝑦 ) ) )
168 167 imbi2d ( 𝑓 = 𝑑 → ( ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑑𝑥 ) < ( 𝑑𝑦 ) ) ) )
169 168 2ralbidv ( 𝑓 = 𝑑 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑𝑥 ) < ( 𝑑𝑦 ) ) ) )
170 164 169 anbi12d ( 𝑓 = 𝑑 → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑𝑥 ) < ( 𝑑𝑦 ) ) ) ) )
171 163 170 elab ( 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑𝑥 ) < ( 𝑑𝑦 ) ) ) )
172 162 171 sylib ( ( 𝜑𝑑𝐵 ) → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑𝑥 ) < ( 𝑑𝑦 ) ) ) )
173 172 simpld ( ( 𝜑𝑑𝐵 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) )
174 0lt1 0 < 1
175 174 a1i ( 𝜑 → 0 < 1 )
176 2 175 eqbrtrd ( 𝜑𝐾 < 1 )
177 9 nn0zd ( 𝜑𝐾 ∈ ℤ )
178 fzn ( ( 1 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 < 1 ↔ ( 1 ... 𝐾 ) = ∅ ) )
179 67 177 178 syl2anc ( 𝜑 → ( 𝐾 < 1 ↔ ( 1 ... 𝐾 ) = ∅ ) )
180 176 179 mpbid ( 𝜑 → ( 1 ... 𝐾 ) = ∅ )
181 180 feq2d ( 𝜑 → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) )
182 181 adantr ( ( 𝜑𝑑𝐵 ) → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) )
183 173 182 mpbid ( ( 𝜑𝑑𝐵 ) → 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) )
184 f0bi ( 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 = ∅ )
185 183 184 sylib ( ( 𝜑𝑑𝐵 ) → 𝑑 = ∅ )
186 velsn ( 𝑑 ∈ { ∅ } ↔ 𝑑 = ∅ )
187 185 186 sylibr ( ( 𝜑𝑑𝐵 ) → 𝑑 ∈ { ∅ } )
188 187 ex ( 𝜑 → ( 𝑑𝐵𝑑 ∈ { ∅ } ) )
189 f0 ∅ : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) )
190 189 a1i ( 𝜑 → ∅ : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) )
191 180 feq2d ( 𝜑 → ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ ∅ : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) )
192 190 191 mpbird ( 𝜑 → ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) )
193 ral0 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) )
194 193 a1i ( 𝜑 → ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) )
195 biidd ( ( 𝜑𝑥 ∈ ( 1 ... 𝐾 ) ) → ( ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) )
196 180 195 raleqbidva ( 𝜑 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) )
197 194 196 mpbird ( 𝜑 → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) )
198 192 197 jca ( 𝜑 → ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) )
199 0ex ∅ ∈ V
200 feq1 ( 𝑓 = ∅ → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) )
201 fveq1 ( 𝑓 = ∅ → ( 𝑓𝑥 ) = ( ∅ ‘ 𝑥 ) )
202 fveq1 ( 𝑓 = ∅ → ( 𝑓𝑦 ) = ( ∅ ‘ 𝑦 ) )
203 201 202 breq12d ( 𝑓 = ∅ → ( ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ↔ ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) )
204 203 imbi2d ( 𝑓 = ∅ → ( ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) )
205 204 2ralbidv ( 𝑓 = ∅ → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) )
206 200 205 anbi12d ( 𝑓 = ∅ → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) ↔ ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) )
207 206 elabg ( ∅ ∈ V → ( ∅ ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ↔ ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) )
208 199 207 ax-mp ( ∅ ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } ↔ ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) )
209 198 208 sylibr ( 𝜑 → ∅ ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } )
210 6 a1i ( 𝜑𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓𝑥 ) < ( 𝑓𝑦 ) ) ) } )
211 209 210 eleqtrrd ( 𝜑 → ∅ ∈ 𝐵 )
212 211 adantr ( ( 𝜑𝑑 ∈ { ∅ } ) → ∅ ∈ 𝐵 )
213 elsni ( 𝑑 ∈ { ∅ } → 𝑑 = ∅ )
214 213 adantl ( ( 𝜑𝑑 ∈ { ∅ } ) → 𝑑 = ∅ )
215 214 eleq1d ( ( 𝜑𝑑 ∈ { ∅ } ) → ( 𝑑𝐵 ↔ ∅ ∈ 𝐵 ) )
216 212 215 mpbird ( ( 𝜑𝑑 ∈ { ∅ } ) → 𝑑𝐵 )
217 216 ex ( 𝜑 → ( 𝑑 ∈ { ∅ } → 𝑑𝐵 ) )
218 188 217 impbid ( 𝜑 → ( 𝑑𝐵𝑑 ∈ { ∅ } ) )
219 156 157 158 218 eqrd ( 𝜑𝐵 = { ∅ } )
220 219 adantr ( ( 𝜑𝑑𝐵 ) → 𝐵 = { ∅ } )
221 155 220 eleqtrd ( ( 𝜑𝑑𝐵 ) → 𝑑 ∈ { ∅ } )
222 163 elsn ( 𝑑 ∈ { ∅ } ↔ 𝑑 = ∅ )
223 221 222 sylib ( ( 𝜑𝑑𝐵 ) → 𝑑 = ∅ )
224 223 fveq2d ( ( 𝜑𝑑𝐵 ) → ( 𝐺𝑑 ) = ( 𝐺 ‘ ∅ ) )
225 224 fveq2d ( ( 𝜑𝑑𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑑 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) )
226 180 adantr ( ( 𝜑𝑎𝐴 ) → ( 1 ... 𝐾 ) = ∅ )
227 226 mpteq1d ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ( 𝑗 ∈ ∅ ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) )
228 mpt0 ( 𝑗 ∈ ∅ ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ∅
229 228 a1i ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ∅ ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ∅ )
230 227 229 eqtrd ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ∅ )
231 fzfid ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin )
232 231 mptexd ( 𝜑 → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ V )
233 elsng ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ V → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { ∅ } ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ∅ ) )
234 232 233 syl ( 𝜑 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { ∅ } ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ∅ ) )
235 234 adantr ( ( 𝜑𝑎𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { ∅ } ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) = ∅ ) )
236 230 235 mpbird ( ( 𝜑𝑎𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎𝑙 ) ) ) ∈ { ∅ } )
237 236 3 fmptd ( 𝜑𝐹 : 𝐴 ⟶ { ∅ } )
238 237 adantr ( ( 𝜑𝑑𝐵 ) → 𝐹 : 𝐴 ⟶ { ∅ } )
239 ffvelrn ( ( 𝐺 : 𝐵𝐴 ∧ ∅ ∈ 𝐵 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐴 )
240 11 211 239 syl2anc ( 𝜑 → ( 𝐺 ‘ ∅ ) ∈ 𝐴 )
241 240 adantr ( ( 𝜑𝑑𝐵 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐴 )
242 fvconst ( ( 𝐹 : 𝐴 ⟶ { ∅ } ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ )
243 238 241 242 syl2anc ( ( 𝜑𝑑𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ )
244 225 243 eqtrd ( ( 𝜑𝑑𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑑 ) ) = ∅ )
245 223 eqcomd ( ( 𝜑𝑑𝐵 ) → ∅ = 𝑑 )
246 244 245 eqtrd ( ( 𝜑𝑑𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑑 ) ) = 𝑑 )
247 246 ralrimiva ( 𝜑 → ∀ 𝑑𝐵 ( 𝐹 ‘ ( 𝐺𝑑 ) ) = 𝑑 )
248 10 11 154 247 2fvidf1od ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )