Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones11.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones11.2 |
⊢ ( 𝜑 → 𝐾 = 0 ) |
3 |
|
sticksstones11.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
4 |
|
sticksstones11.4 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
5 |
|
sticksstones11.5 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
6 |
|
sticksstones11.6 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
7 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
9 |
2 8
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
10 |
1 9 3 5 6
|
sticksstones8 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
11 |
1 2 4 5 6
|
sticksstones9 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
12 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
13 |
|
nfv |
⊢ Ⅎ 𝑢 𝜑 |
14 |
|
nfcv |
⊢ Ⅎ 𝑢 { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
15 |
|
nfcv |
⊢ Ⅎ 𝑢 { { 〈 1 , 𝑁 〉 } } |
16 |
|
ffn |
⊢ ( 𝑢 : { 1 } ⟶ ℕ0 → 𝑢 Fn { 1 } ) |
17 |
16
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 Fn { 1 } ) |
18 |
|
1nn |
⊢ 1 ∈ ℕ |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 1 ∈ ℕ ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
21 |
|
fnsng |
⊢ ( ( 1 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → { 〈 1 , 𝑁 〉 } Fn { 1 } ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → { 〈 1 , 𝑁 〉 } Fn { 1 } ) |
23 |
|
elsni |
⊢ ( 𝑝 ∈ { 1 } → 𝑝 = 1 ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 𝑝 = 1 ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → 𝑝 = 1 ) |
26 |
25
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( 𝑢 ‘ 𝑝 ) = ( 𝑢 ‘ 1 ) ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ ℕ0 ) |
28 |
|
1ex |
⊢ 1 ∈ V |
29 |
28
|
snid |
⊢ 1 ∈ { 1 } |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 1 ∈ { 1 } ) |
31 |
27 30
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → ( 𝑢 ‘ 1 ) ∈ ℕ0 ) |
32 |
31
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → ( 𝑢 ‘ 1 ) ∈ ℂ ) |
33 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) |
34 |
33
|
sumsn |
⊢ ( ( 1 ∈ ℕ ∧ ( 𝑢 ‘ 1 ) ∈ ℂ ) → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) |
35 |
19 32 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) → ( 𝑢 ‘ 1 ) = Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) ) |
38 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) |
39 |
37 38
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) → ( 𝑢 ‘ 1 ) = 𝑁 ) |
40 |
39
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → ( Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) → ( 𝑢 ‘ 1 ) = 𝑁 ) ) |
41 |
35 40
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → ( 𝑢 ‘ 1 ) = 𝑁 ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( 𝑢 ‘ 1 ) = 𝑁 ) |
43 |
18
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 1 ∈ ℕ ) |
44 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 𝑁 ∈ ℕ0 ) |
45 |
|
fvsng |
⊢ ( ( 1 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( { 〈 1 , 𝑁 〉 } ‘ 1 ) = 𝑁 ) |
46 |
43 44 45
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( { 〈 1 , 𝑁 〉 } ‘ 1 ) = 𝑁 ) |
47 |
46
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → 𝑁 = ( { 〈 1 , 𝑁 〉 } ‘ 1 ) ) |
48 |
42 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( 𝑢 ‘ 1 ) = ( { 〈 1 , 𝑁 〉 } ‘ 1 ) ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( 𝑢 ‘ 1 ) = ( { 〈 1 , 𝑁 〉 } ‘ 1 ) ) |
50 |
25
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → 1 = 𝑝 ) |
51 |
50
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( { 〈 1 , 𝑁 〉 } ‘ 1 ) = ( { 〈 1 , 𝑁 〉 } ‘ 𝑝 ) ) |
52 |
26 49 51
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) ∧ 𝑝 = 1 ) → ( 𝑢 ‘ 𝑝 ) = ( { 〈 1 , 𝑁 〉 } ‘ 𝑝 ) ) |
53 |
24 52
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ∧ 𝑝 ∈ { 1 } ) → ( 𝑢 ‘ 𝑝 ) = ( { 〈 1 , 𝑁 〉 } ‘ 𝑝 ) ) |
54 |
17 22 53
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 = { 〈 1 , 𝑁 〉 } ) |
55 |
|
fsng |
⊢ ( ( 1 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑢 : { 1 } ⟶ { 𝑁 } ↔ 𝑢 = { 〈 1 , 𝑁 〉 } ) ) |
56 |
19 20 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → ( 𝑢 : { 1 } ⟶ { 𝑁 } ↔ 𝑢 = { 〈 1 , 𝑁 〉 } ) ) |
57 |
54 56
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ { 𝑁 } ) |
58 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → { 𝑁 } ⊆ { 𝑁 } ) |
59 |
|
fss |
⊢ ( ( 𝑢 : { 1 } ⟶ { 𝑁 } ∧ { 𝑁 } ⊆ { 𝑁 } ) → 𝑢 : { 1 } ⟶ { 𝑁 } ) |
60 |
57 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ { 𝑁 } ) |
61 |
60 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 : { 1 } ⟶ { 𝑁 } ) |
62 |
61 56
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 = { 〈 1 , 𝑁 〉 } ) |
63 |
|
vex |
⊢ 𝑢 ∈ V |
64 |
63
|
elsn |
⊢ ( 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ↔ 𝑢 = { 〈 1 , 𝑁 〉 } ) |
65 |
62 64
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) |
66 |
65
|
ex |
⊢ ( 𝜑 → ( ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ) |
67 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
68 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → ( 1 ... 1 ) = { 1 } ) |
70 |
69
|
eqcomd |
⊢ ( 𝜑 → { 1 } = ( 1 ... 1 ) ) |
71 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
72 |
71
|
a1i |
⊢ ( 𝜑 → 1 = ( 0 + 1 ) ) |
73 |
72
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... 1 ) = ( 1 ... ( 0 + 1 ) ) ) |
74 |
70 73
|
eqtrd |
⊢ ( 𝜑 → { 1 } = ( 1 ... ( 0 + 1 ) ) ) |
75 |
2
|
eqcomd |
⊢ ( 𝜑 → 0 = 𝐾 ) |
76 |
75
|
oveq1d |
⊢ ( 𝜑 → ( 0 + 1 ) = ( 𝐾 + 1 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( 0 + 1 ) ) = ( 1 ... ( 𝐾 + 1 ) ) ) |
78 |
74 77
|
eqtrd |
⊢ ( 𝜑 → { 1 } = ( 1 ... ( 𝐾 + 1 ) ) ) |
79 |
78
|
feq2d |
⊢ ( 𝜑 → ( 𝑢 : { 1 } ⟶ ℕ0 ↔ 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
80 |
78
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) ) |
81 |
80
|
eqeq1d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) |
82 |
79 81
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ) |
83 |
82
|
imbi1d |
⊢ ( 𝜑 → ( ( ( 𝑢 : { 1 } ⟶ ℕ0 ∧ Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ↔ ( ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ) ) |
84 |
66 83
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ) |
85 |
|
feq1 |
⊢ ( 𝑔 = 𝑢 → ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ↔ 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
86 |
|
simpl |
⊢ ( ( 𝑔 = 𝑢 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → 𝑔 = 𝑢 ) |
87 |
86
|
fveq1d |
⊢ ( ( 𝑔 = 𝑢 ∧ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑢 ‘ 𝑖 ) ) |
88 |
87
|
sumeq2dv |
⊢ ( 𝑔 = 𝑢 → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) ) |
89 |
88
|
eqeq1d |
⊢ ( 𝑔 = 𝑢 → ( Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) |
90 |
85 89
|
anbi12d |
⊢ ( 𝑔 = 𝑢 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ) |
91 |
63 90
|
elab |
⊢ ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) |
92 |
91
|
a1i |
⊢ ( 𝜑 → ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) ) |
93 |
92
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ↔ ( ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ) ) |
94 |
84 93
|
mpbird |
⊢ ( 𝜑 → ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ) |
95 |
94
|
imp |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) |
96 |
95
|
ex |
⊢ ( 𝜑 → ( 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } → 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ) |
97 |
13 14 15 96
|
ssrd |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ⊆ { { 〈 1 , 𝑁 〉 } } ) |
98 |
18
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
99 |
98 1 55
|
syl2anc |
⊢ ( 𝜑 → ( 𝑢 : { 1 } ⟶ { 𝑁 } ↔ 𝑢 = { 〈 1 , 𝑁 〉 } ) ) |
100 |
99
|
bicomd |
⊢ ( 𝜑 → ( 𝑢 = { 〈 1 , 𝑁 〉 } ↔ 𝑢 : { 1 } ⟶ { 𝑁 } ) ) |
101 |
100
|
biimpd |
⊢ ( 𝜑 → ( 𝑢 = { 〈 1 , 𝑁 〉 } → 𝑢 : { 1 } ⟶ { 𝑁 } ) ) |
102 |
|
elsni |
⊢ ( 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } → 𝑢 = { 〈 1 , 𝑁 〉 } ) |
103 |
101 102
|
impel |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → 𝑢 : { 1 } ⟶ { 𝑁 } ) |
104 |
1
|
snssd |
⊢ ( 𝜑 → { 𝑁 } ⊆ ℕ0 ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → { 𝑁 } ⊆ ℕ0 ) |
106 |
|
fss |
⊢ ( ( 𝑢 : { 1 } ⟶ { 𝑁 } ∧ { 𝑁 } ⊆ ℕ0 ) → 𝑢 : { 1 } ⟶ ℕ0 ) |
107 |
103 105 106
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → 𝑢 : { 1 } ⟶ ℕ0 ) |
108 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → ( 𝑢 : { 1 } ⟶ ℕ0 ↔ 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
109 |
107 108
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
110 |
102
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → 𝑢 = { 〈 1 , 𝑁 〉 } ) |
111 |
78
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → { 1 } = ( 1 ... ( 𝐾 + 1 ) ) ) |
112 |
111
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → ( 1 ... ( 𝐾 + 1 ) ) = { 1 } ) |
113 |
112
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) ) |
114 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → 1 ∈ ℕ ) |
115 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → 𝑁 ∈ ℕ0 ) |
116 |
115
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → 𝑁 ∈ ℂ ) |
117 |
114 115 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → ( { 〈 1 , 𝑁 〉 } ‘ 1 ) = 𝑁 ) |
118 |
117
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → 𝑁 = ( { 〈 1 , 𝑁 〉 } ‘ 1 ) ) |
119 |
110
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → 𝑢 = { 〈 1 , 𝑁 〉 } ) |
120 |
119
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → ( 𝑢 ‘ 1 ) = ( { 〈 1 , 𝑁 〉 } ‘ 1 ) ) |
121 |
118 120
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → 𝑁 = ( 𝑢 ‘ 1 ) ) |
122 |
121
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → ( 𝑁 ∈ ℂ ↔ ( 𝑢 ‘ 1 ) ∈ ℂ ) ) |
123 |
116 122
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → ( 𝑢 ‘ 1 ) ∈ ℂ ) |
124 |
114 123 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = ( 𝑢 ‘ 1 ) ) |
125 |
120 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → ( 𝑢 ‘ 1 ) = 𝑁 ) |
126 |
124 125
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → Σ 𝑖 ∈ { 1 } ( 𝑢 ‘ 𝑖 ) = 𝑁 ) |
127 |
113 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) |
128 |
127
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) ∧ 𝑢 = { 〈 1 , 𝑁 〉 } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) |
129 |
110 128
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) |
130 |
109 129
|
jca |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → ( 𝑢 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑢 ‘ 𝑖 ) = 𝑁 ) ) |
131 |
130 91
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } ) → 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
132 |
131
|
ex |
⊢ ( 𝜑 → ( 𝑢 ∈ { { 〈 1 , 𝑁 〉 } } → 𝑢 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) ) |
133 |
13 15 14 132
|
ssrd |
⊢ ( 𝜑 → { { 〈 1 , 𝑁 〉 } } ⊆ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
134 |
97 133
|
eqssd |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } = { { 〈 1 , 𝑁 〉 } } ) |
135 |
12 134
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = { { 〈 1 , 𝑁 〉 } } ) |
136 |
|
eqss |
⊢ ( 𝐴 = { { 〈 1 , 𝑁 〉 } } ↔ ( 𝐴 ⊆ { { 〈 1 , 𝑁 〉 } } ∧ { { 〈 1 , 𝑁 〉 } } ⊆ 𝐴 ) ) |
137 |
136
|
biimpi |
⊢ ( 𝐴 = { { 〈 1 , 𝑁 〉 } } → ( 𝐴 ⊆ { { 〈 1 , 𝑁 〉 } } ∧ { { 〈 1 , 𝑁 〉 } } ⊆ 𝐴 ) ) |
138 |
137
|
simpld |
⊢ ( 𝐴 = { { 〈 1 , 𝑁 〉 } } → 𝐴 ⊆ { { 〈 1 , 𝑁 〉 } } ) |
139 |
135 138
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ { { 〈 1 , 𝑁 〉 } } ) |
140 |
|
fss |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐴 ⊆ { { 〈 1 , 𝑁 〉 } } ) → 𝐺 : 𝐵 ⟶ { { 〈 1 , 𝑁 〉 } } ) |
141 |
11 139 140
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ { { 〈 1 , 𝑁 〉 } } ) |
142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐺 : 𝐵 ⟶ { { 〈 1 , 𝑁 〉 } } ) |
143 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
144 |
|
fvconst |
⊢ ( ( 𝐺 : 𝐵 ⟶ { { 〈 1 , 𝑁 〉 } } ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = { 〈 1 , 𝑁 〉 } ) |
145 |
142 143 144
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = { 〈 1 , 𝑁 〉 } ) |
146 |
135
|
eleq2d |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝐴 ↔ 𝑐 ∈ { { 〈 1 , 𝑁 〉 } } ) ) |
147 |
146
|
biimpd |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝐴 → 𝑐 ∈ { { 〈 1 , 𝑁 〉 } } ) ) |
148 |
147
|
imp |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ { { 〈 1 , 𝑁 〉 } } ) |
149 |
|
vex |
⊢ 𝑐 ∈ V |
150 |
149
|
elsn |
⊢ ( 𝑐 ∈ { { 〈 1 , 𝑁 〉 } } ↔ 𝑐 = { 〈 1 , 𝑁 〉 } ) |
151 |
148 150
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 = { 〈 1 , 𝑁 〉 } ) |
152 |
151
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → { 〈 1 , 𝑁 〉 } = 𝑐 ) |
153 |
145 152
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
154 |
153
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
155 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ 𝐵 ) |
156 |
|
nfv |
⊢ Ⅎ 𝑑 𝜑 |
157 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐵 |
158 |
|
nfcv |
⊢ Ⅎ 𝑑 { ∅ } |
159 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
160 |
159
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ∈ 𝐵 ↔ 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
161 |
160
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 ∈ 𝐵 → 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
162 |
161
|
syldbl2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
163 |
|
vex |
⊢ 𝑑 ∈ V |
164 |
|
feq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
165 |
|
fveq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 ‘ 𝑥 ) = ( 𝑑 ‘ 𝑥 ) ) |
166 |
|
fveq1 |
⊢ ( 𝑓 = 𝑑 → ( 𝑓 ‘ 𝑦 ) = ( 𝑑 ‘ 𝑦 ) ) |
167 |
165 166
|
breq12d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) |
168 |
167
|
imbi2d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
169 |
168
|
2ralbidv |
⊢ ( 𝑓 = 𝑑 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
170 |
164 169
|
anbi12d |
⊢ ( 𝑓 = 𝑑 → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) ) |
171 |
163 170
|
elab |
⊢ ( 𝑑 ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
172 |
162 171
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑑 ‘ 𝑥 ) < ( 𝑑 ‘ 𝑦 ) ) ) ) |
173 |
172
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
174 |
|
0lt1 |
⊢ 0 < 1 |
175 |
174
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
176 |
2 175
|
eqbrtrd |
⊢ ( 𝜑 → 𝐾 < 1 ) |
177 |
9
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
178 |
|
fzn |
⊢ ( ( 1 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 < 1 ↔ ( 1 ... 𝐾 ) = ∅ ) ) |
179 |
67 177 178
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 < 1 ↔ ( 1 ... 𝐾 ) = ∅ ) ) |
180 |
176 179
|
mpbid |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) = ∅ ) |
181 |
180
|
feq2d |
⊢ ( 𝜑 → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
183 |
173 182
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
184 |
|
f0bi |
⊢ ( 𝑑 : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑑 = ∅ ) |
185 |
183 184
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 = ∅ ) |
186 |
|
velsn |
⊢ ( 𝑑 ∈ { ∅ } ↔ 𝑑 = ∅ ) |
187 |
185 186
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ { ∅ } ) |
188 |
187
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐵 → 𝑑 ∈ { ∅ } ) ) |
189 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) |
190 |
189
|
a1i |
⊢ ( 𝜑 → ∅ : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
191 |
180
|
feq2d |
⊢ ( 𝜑 → ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ ∅ : ∅ ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
192 |
190 191
|
mpbird |
⊢ ( 𝜑 → ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) |
193 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) |
194 |
193
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) |
195 |
|
biidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝐾 ) ) → ( ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) |
196 |
180 195
|
raleqbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) |
197 |
194 196
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) |
198 |
192 197
|
jca |
⊢ ( 𝜑 → ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) |
199 |
|
0ex |
⊢ ∅ ∈ V |
200 |
|
feq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
201 |
|
fveq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 ‘ 𝑥 ) = ( ∅ ‘ 𝑥 ) ) |
202 |
|
fveq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 ‘ 𝑦 ) = ( ∅ ‘ 𝑦 ) ) |
203 |
201 202
|
breq12d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ↔ ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) |
204 |
203
|
imbi2d |
⊢ ( 𝑓 = ∅ → ( ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) |
205 |
204
|
2ralbidv |
⊢ ( 𝑓 = ∅ → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) |
206 |
200 205
|
anbi12d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) ) |
207 |
206
|
elabg |
⊢ ( ∅ ∈ V → ( ∅ ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) ) |
208 |
199 207
|
ax-mp |
⊢ ( ∅ ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( ∅ : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( ∅ ‘ 𝑥 ) < ( ∅ ‘ 𝑦 ) ) ) ) |
209 |
198 208
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
210 |
6
|
a1i |
⊢ ( 𝜑 → 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } ) |
211 |
209 210
|
eleqtrrd |
⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ∅ } ) → ∅ ∈ 𝐵 ) |
213 |
|
elsni |
⊢ ( 𝑑 ∈ { ∅ } → 𝑑 = ∅ ) |
214 |
213
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ∅ } ) → 𝑑 = ∅ ) |
215 |
214
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ∅ } ) → ( 𝑑 ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) ) |
216 |
212 215
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ∅ } ) → 𝑑 ∈ 𝐵 ) |
217 |
216
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ { ∅ } → 𝑑 ∈ 𝐵 ) ) |
218 |
188 217
|
impbid |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝐵 ↔ 𝑑 ∈ { ∅ } ) ) |
219 |
156 157 158 218
|
eqrd |
⊢ ( 𝜑 → 𝐵 = { ∅ } ) |
220 |
219
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐵 = { ∅ } ) |
221 |
155 220
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ { ∅ } ) |
222 |
163
|
elsn |
⊢ ( 𝑑 ∈ { ∅ } ↔ 𝑑 = ∅ ) |
223 |
221 222
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 = ∅ ) |
224 |
223
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑑 ) = ( 𝐺 ‘ ∅ ) ) |
225 |
224
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) |
226 |
180
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 1 ... 𝐾 ) = ∅ ) |
227 |
226
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ( 𝑗 ∈ ∅ ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
228 |
|
mpt0 |
⊢ ( 𝑗 ∈ ∅ ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ∅ |
229 |
228
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ∅ ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ∅ ) |
230 |
227 229
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ∅ ) |
231 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin ) |
232 |
231
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ V ) |
233 |
|
elsng |
⊢ ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ V → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { ∅ } ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ∅ ) ) |
234 |
232 233
|
syl |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { ∅ } ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ∅ ) ) |
235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { ∅ } ↔ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) = ∅ ) ) |
236 |
230 235
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ∈ { ∅ } ) |
237 |
236 3
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ { ∅ } ) |
238 |
237
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ { ∅ } ) |
239 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ ∅ ∈ 𝐵 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) |
240 |
11 211 239
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) |
241 |
240
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) |
242 |
|
fvconst |
⊢ ( ( 𝐹 : 𝐴 ⟶ { ∅ } ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ ) |
243 |
238 241 242
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) = ∅ ) |
244 |
225 243
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ∅ ) |
245 |
223
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ∅ = 𝑑 ) |
246 |
244 245
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
247 |
246
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
248 |
10 11 154 247
|
2fvidf1od |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |