Metamath Proof Explorer


Theorem strlem3

Description: Lemma for strong state theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses strlem3.1
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
strlem3.2
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
strlem3.3
|- A e. CH
strlem3.4
|- B e. CH
Assertion strlem3
|- ( ph -> S e. States )

Proof

Step Hyp Ref Expression
1 strlem3.1
 |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
2 strlem3.2
 |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
3 strlem3.3
 |-  A e. CH
4 strlem3.4
 |-  B e. CH
5 eldifi
 |-  ( u e. ( A \ B ) -> u e. A )
6 3 cheli
 |-  ( u e. A -> u e. ~H )
7 5 6 syl
 |-  ( u e. ( A \ B ) -> u e. ~H )
8 1 strlem3a
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. States )
9 7 8 sylan
 |-  ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> S e. States )
10 2 9 sylbi
 |-  ( ph -> S e. States )