Metamath Proof Explorer


Theorem strlem3a

Description: Lemma for strong state theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis strlem3a.1
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
Assertion strlem3a
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. States )

Proof

Step Hyp Ref Expression
1 strlem3a.1
 |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
2 id
 |-  ( x e. CH -> x e. CH )
3 simpl
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> u e. ~H )
4 pjhcl
 |-  ( ( x e. CH /\ u e. ~H ) -> ( ( projh ` x ) ` u ) e. ~H )
5 2 3 4 syl2anr
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( projh ` x ) ` u ) e. ~H )
6 normcl
 |-  ( ( ( projh ` x ) ` u ) e. ~H -> ( normh ` ( ( projh ` x ) ` u ) ) e. RR )
7 5 6 syl
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) e. RR )
8 7 resqcld
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. RR )
9 7 sqge0d
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> 0 <_ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
10 normge0
 |-  ( ( ( projh ` x ) ` u ) e. ~H -> 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) )
11 5 10 syl
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) )
12 pjnorm
 |-  ( ( x e. CH /\ u e. ~H ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ ( normh ` u ) )
13 2 3 12 syl2anr
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ ( normh ` u ) )
14 simplr
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` u ) = 1 )
15 13 14 breqtrd
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 )
16 2nn0
 |-  2 e. NN0
17 exple1
 |-  ( ( ( ( normh ` ( ( projh ` x ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) /\ ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) /\ 2 e. NN0 ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 )
18 16 17 mpan2
 |-  ( ( ( normh ` ( ( projh ` x ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) /\ ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 )
19 7 11 15 18 syl3anc
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 )
20 elicc01
 |-  ( ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. ( 0 [,] 1 ) <-> ( ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. RR /\ 0 <_ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) /\ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) )
21 8 9 19 20 syl3anbrc
 |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. ( 0 [,] 1 ) )
22 21 1 fmptd
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S : CH --> ( 0 [,] 1 ) )
23 helch
 |-  ~H e. CH
24 1 strlem2
 |-  ( ~H e. CH -> ( S ` ~H ) = ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) )
25 23 24 ax-mp
 |-  ( S ` ~H ) = ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 )
26 pjch1
 |-  ( u e. ~H -> ( ( projh ` ~H ) ` u ) = u )
27 26 fveq2d
 |-  ( u e. ~H -> ( normh ` ( ( projh ` ~H ) ` u ) ) = ( normh ` u ) )
28 27 oveq1d
 |-  ( u e. ~H -> ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) = ( ( normh ` u ) ^ 2 ) )
29 oveq1
 |-  ( ( normh ` u ) = 1 -> ( ( normh ` u ) ^ 2 ) = ( 1 ^ 2 ) )
30 sq1
 |-  ( 1 ^ 2 ) = 1
31 29 30 eqtrdi
 |-  ( ( normh ` u ) = 1 -> ( ( normh ` u ) ^ 2 ) = 1 )
32 28 31 sylan9eq
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) = 1 )
33 25 32 syl5eq
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( S ` ~H ) = 1 )
34 pjcjt2
 |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) )
35 34 imp
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) )
36 35 fveq2d
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) = ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) )
37 36 oveq1d
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) = ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) )
38 pjopyth
 |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) )
39 38 imp
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) )
40 37 39 eqtrd
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) )
41 chjcl
 |-  ( ( z e. CH /\ w e. CH ) -> ( z vH w ) e. CH )
42 41 3adant3
 |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z vH w ) e. CH )
43 42 adantr
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( z vH w ) e. CH )
44 1 strlem2
 |-  ( ( z vH w ) e. CH -> ( S ` ( z vH w ) ) = ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) )
45 43 44 syl
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) )
46 3simpa
 |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z e. CH /\ w e. CH ) )
47 46 adantr
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( z e. CH /\ w e. CH ) )
48 1 strlem2
 |-  ( z e. CH -> ( S ` z ) = ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) )
49 1 strlem2
 |-  ( w e. CH -> ( S ` w ) = ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) )
50 48 49 oveqan12d
 |-  ( ( z e. CH /\ w e. CH ) -> ( ( S ` z ) + ( S ` w ) ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) )
51 47 50 syl
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( S ` z ) + ( S ` w ) ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) )
52 40 45 51 3eqtr4d
 |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) )
53 52 3exp1
 |-  ( z e. CH -> ( w e. CH -> ( u e. ~H -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) )
54 53 com3r
 |-  ( u e. ~H -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) )
55 54 adantr
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) )
56 55 ralrimdv
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) )
57 56 ralrimiv
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) )
58 isst
 |-  ( S e. States <-> ( S : CH --> ( 0 [,] 1 ) /\ ( S ` ~H ) = 1 /\ A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) )
59 22 33 57 58 syl3anbrc
 |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. States )