Step |
Hyp |
Ref |
Expression |
1 |
|
strlem3a.1 |
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
2 |
|
id |
|- ( x e. CH -> x e. CH ) |
3 |
|
simpl |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> u e. ~H ) |
4 |
|
pjhcl |
|- ( ( x e. CH /\ u e. ~H ) -> ( ( projh ` x ) ` u ) e. ~H ) |
5 |
2 3 4
|
syl2anr |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( projh ` x ) ` u ) e. ~H ) |
6 |
|
normcl |
|- ( ( ( projh ` x ) ` u ) e. ~H -> ( normh ` ( ( projh ` x ) ` u ) ) e. RR ) |
7 |
5 6
|
syl |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) e. RR ) |
8 |
7
|
resqcld |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. RR ) |
9 |
7
|
sqge0d |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> 0 <_ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
10 |
|
normge0 |
|- ( ( ( projh ` x ) ` u ) e. ~H -> 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) ) |
11 |
5 10
|
syl |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) ) |
12 |
|
pjnorm |
|- ( ( x e. CH /\ u e. ~H ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ ( normh ` u ) ) |
13 |
2 3 12
|
syl2anr |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ ( normh ` u ) ) |
14 |
|
simplr |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` u ) = 1 ) |
15 |
13 14
|
breqtrd |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) |
16 |
|
2nn0 |
|- 2 e. NN0 |
17 |
|
exple1 |
|- ( ( ( ( normh ` ( ( projh ` x ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) /\ ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) /\ 2 e. NN0 ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) |
18 |
16 17
|
mpan2 |
|- ( ( ( normh ` ( ( projh ` x ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) /\ ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) |
19 |
7 11 15 18
|
syl3anc |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) |
20 |
|
elicc01 |
|- ( ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. ( 0 [,] 1 ) <-> ( ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. RR /\ 0 <_ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) /\ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) ) |
21 |
8 9 19 20
|
syl3anbrc |
|- ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. ( 0 [,] 1 ) ) |
22 |
21 1
|
fmptd |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S : CH --> ( 0 [,] 1 ) ) |
23 |
|
helch |
|- ~H e. CH |
24 |
1
|
strlem2 |
|- ( ~H e. CH -> ( S ` ~H ) = ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) ) |
25 |
23 24
|
ax-mp |
|- ( S ` ~H ) = ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) |
26 |
|
pjch1 |
|- ( u e. ~H -> ( ( projh ` ~H ) ` u ) = u ) |
27 |
26
|
fveq2d |
|- ( u e. ~H -> ( normh ` ( ( projh ` ~H ) ` u ) ) = ( normh ` u ) ) |
28 |
27
|
oveq1d |
|- ( u e. ~H -> ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) = ( ( normh ` u ) ^ 2 ) ) |
29 |
|
oveq1 |
|- ( ( normh ` u ) = 1 -> ( ( normh ` u ) ^ 2 ) = ( 1 ^ 2 ) ) |
30 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
31 |
29 30
|
eqtrdi |
|- ( ( normh ` u ) = 1 -> ( ( normh ` u ) ^ 2 ) = 1 ) |
32 |
28 31
|
sylan9eq |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) = 1 ) |
33 |
25 32
|
syl5eq |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( S ` ~H ) = 1 ) |
34 |
|
pjcjt2 |
|- ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ) |
35 |
34
|
imp |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) |
36 |
35
|
fveq2d |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) = ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ) |
37 |
36
|
oveq1d |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) = ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) ) |
38 |
|
pjopyth |
|- ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) ) |
39 |
38
|
imp |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) |
40 |
37 39
|
eqtrd |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) |
41 |
|
chjcl |
|- ( ( z e. CH /\ w e. CH ) -> ( z vH w ) e. CH ) |
42 |
41
|
3adant3 |
|- ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z vH w ) e. CH ) |
43 |
42
|
adantr |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( z vH w ) e. CH ) |
44 |
1
|
strlem2 |
|- ( ( z vH w ) e. CH -> ( S ` ( z vH w ) ) = ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) ) |
45 |
43 44
|
syl |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) ) |
46 |
|
3simpa |
|- ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z e. CH /\ w e. CH ) ) |
47 |
46
|
adantr |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( z e. CH /\ w e. CH ) ) |
48 |
1
|
strlem2 |
|- ( z e. CH -> ( S ` z ) = ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) ) |
49 |
1
|
strlem2 |
|- ( w e. CH -> ( S ` w ) = ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) |
50 |
48 49
|
oveqan12d |
|- ( ( z e. CH /\ w e. CH ) -> ( ( S ` z ) + ( S ` w ) ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) |
51 |
47 50
|
syl |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( S ` z ) + ( S ` w ) ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) |
52 |
40 45 51
|
3eqtr4d |
|- ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) |
53 |
52
|
3exp1 |
|- ( z e. CH -> ( w e. CH -> ( u e. ~H -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) ) |
54 |
53
|
com3r |
|- ( u e. ~H -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) ) |
55 |
54
|
adantr |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) ) |
56 |
55
|
ralrimdv |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) |
57 |
56
|
ralrimiv |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) |
58 |
|
isst |
|- ( S e. States <-> ( S : CH --> ( 0 [,] 1 ) /\ ( S ` ~H ) = 1 /\ A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) |
59 |
22 33 57 58
|
syl3anbrc |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. States ) |