| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem3a.1 |  |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) | 
						
							| 2 |  | id |  |-  ( x e. CH -> x e. CH ) | 
						
							| 3 |  | simpl |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> u e. ~H ) | 
						
							| 4 |  | pjhcl |  |-  ( ( x e. CH /\ u e. ~H ) -> ( ( projh ` x ) ` u ) e. ~H ) | 
						
							| 5 | 2 3 4 | syl2anr |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( projh ` x ) ` u ) e. ~H ) | 
						
							| 6 |  | normcl |  |-  ( ( ( projh ` x ) ` u ) e. ~H -> ( normh ` ( ( projh ` x ) ` u ) ) e. RR ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) e. RR ) | 
						
							| 8 | 7 | resqcld |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. RR ) | 
						
							| 9 | 7 | sqge0d |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> 0 <_ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) | 
						
							| 10 |  | normge0 |  |-  ( ( ( projh ` x ) ` u ) e. ~H -> 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) ) | 
						
							| 11 | 5 10 | syl |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) ) | 
						
							| 12 |  | pjnorm |  |-  ( ( x e. CH /\ u e. ~H ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ ( normh ` u ) ) | 
						
							| 13 | 2 3 12 | syl2anr |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ ( normh ` u ) ) | 
						
							| 14 |  | simplr |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` u ) = 1 ) | 
						
							| 15 | 13 14 | breqtrd |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) | 
						
							| 16 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 17 |  | exple1 |  |-  ( ( ( ( normh ` ( ( projh ` x ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) /\ ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) /\ 2 e. NN0 ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) | 
						
							| 18 | 16 17 | mpan2 |  |-  ( ( ( normh ` ( ( projh ` x ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` x ) ` u ) ) /\ ( normh ` ( ( projh ` x ) ` u ) ) <_ 1 ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) | 
						
							| 19 | 7 11 15 18 | syl3anc |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) | 
						
							| 20 |  | elicc01 |  |-  ( ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. ( 0 [,] 1 ) <-> ( ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. RR /\ 0 <_ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) /\ ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) <_ 1 ) ) | 
						
							| 21 | 8 9 19 20 | syl3anbrc |  |-  ( ( ( u e. ~H /\ ( normh ` u ) = 1 ) /\ x e. CH ) -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) e. ( 0 [,] 1 ) ) | 
						
							| 22 | 21 1 | fmptd |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S : CH --> ( 0 [,] 1 ) ) | 
						
							| 23 |  | helch |  |-  ~H e. CH | 
						
							| 24 | 1 | strlem2 |  |-  ( ~H e. CH -> ( S ` ~H ) = ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) ) | 
						
							| 25 | 23 24 | ax-mp |  |-  ( S ` ~H ) = ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) | 
						
							| 26 |  | pjch1 |  |-  ( u e. ~H -> ( ( projh ` ~H ) ` u ) = u ) | 
						
							| 27 | 26 | fveq2d |  |-  ( u e. ~H -> ( normh ` ( ( projh ` ~H ) ` u ) ) = ( normh ` u ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( u e. ~H -> ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) = ( ( normh ` u ) ^ 2 ) ) | 
						
							| 29 |  | oveq1 |  |-  ( ( normh ` u ) = 1 -> ( ( normh ` u ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 30 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 31 | 29 30 | eqtrdi |  |-  ( ( normh ` u ) = 1 -> ( ( normh ` u ) ^ 2 ) = 1 ) | 
						
							| 32 | 28 31 | sylan9eq |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( normh ` ( ( projh ` ~H ) ` u ) ) ^ 2 ) = 1 ) | 
						
							| 33 | 25 32 | eqtrid |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( S ` ~H ) = 1 ) | 
						
							| 34 |  | pjcjt2 |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( projh ` ( z vH w ) ) ` u ) = ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) = ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) = ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) ) | 
						
							| 38 |  | pjopyth |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z C_ ( _|_ ` w ) -> ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) ) | 
						
							| 39 | 38 | imp |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( ( projh ` z ) ` u ) +h ( ( projh ` w ) ` u ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) | 
						
							| 40 | 37 39 | eqtrd |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) | 
						
							| 41 |  | chjcl |  |-  ( ( z e. CH /\ w e. CH ) -> ( z vH w ) e. CH ) | 
						
							| 42 | 41 | 3adant3 |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z vH w ) e. CH ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( z vH w ) e. CH ) | 
						
							| 44 | 1 | strlem2 |  |-  ( ( z vH w ) e. CH -> ( S ` ( z vH w ) ) = ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( normh ` ( ( projh ` ( z vH w ) ) ` u ) ) ^ 2 ) ) | 
						
							| 46 |  | 3simpa |  |-  ( ( z e. CH /\ w e. CH /\ u e. ~H ) -> ( z e. CH /\ w e. CH ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( z e. CH /\ w e. CH ) ) | 
						
							| 48 | 1 | strlem2 |  |-  ( z e. CH -> ( S ` z ) = ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) ) | 
						
							| 49 | 1 | strlem2 |  |-  ( w e. CH -> ( S ` w ) = ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) | 
						
							| 50 | 48 49 | oveqan12d |  |-  ( ( z e. CH /\ w e. CH ) -> ( ( S ` z ) + ( S ` w ) ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) | 
						
							| 51 | 47 50 | syl |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( ( S ` z ) + ( S ` w ) ) = ( ( ( normh ` ( ( projh ` z ) ` u ) ) ^ 2 ) + ( ( normh ` ( ( projh ` w ) ` u ) ) ^ 2 ) ) ) | 
						
							| 52 | 40 45 51 | 3eqtr4d |  |-  ( ( ( z e. CH /\ w e. CH /\ u e. ~H ) /\ z C_ ( _|_ ` w ) ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) | 
						
							| 53 | 52 | 3exp1 |  |-  ( z e. CH -> ( w e. CH -> ( u e. ~H -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) ) | 
						
							| 54 | 53 | com3r |  |-  ( u e. ~H -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> ( w e. CH -> ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) ) | 
						
							| 56 | 55 | ralrimdv |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( z e. CH -> A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) | 
						
							| 57 | 56 | ralrimiv |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) | 
						
							| 58 |  | isst |  |-  ( S e. States <-> ( S : CH --> ( 0 [,] 1 ) /\ ( S ` ~H ) = 1 /\ A. z e. CH A. w e. CH ( z C_ ( _|_ ` w ) -> ( S ` ( z vH w ) ) = ( ( S ` z ) + ( S ` w ) ) ) ) ) | 
						
							| 59 | 22 33 57 58 | syl3anbrc |  |-  ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> S e. States ) |