Step |
Hyp |
Ref |
Expression |
1 |
|
strlem3a.1 |
|
2 |
|
id |
|
3 |
|
simpl |
|
4 |
|
pjhcl |
|
5 |
2 3 4
|
syl2anr |
|
6 |
|
normcl |
|
7 |
5 6
|
syl |
|
8 |
7
|
resqcld |
|
9 |
7
|
sqge0d |
|
10 |
|
normge0 |
|
11 |
5 10
|
syl |
|
12 |
|
pjnorm |
|
13 |
2 3 12
|
syl2anr |
|
14 |
|
simplr |
|
15 |
13 14
|
breqtrd |
|
16 |
|
2nn0 |
|
17 |
|
exple1 |
|
18 |
16 17
|
mpan2 |
|
19 |
7 11 15 18
|
syl3anc |
|
20 |
|
elicc01 |
|
21 |
8 9 19 20
|
syl3anbrc |
|
22 |
21 1
|
fmptd |
|
23 |
|
helch |
|
24 |
1
|
strlem2 |
|
25 |
23 24
|
ax-mp |
|
26 |
|
pjch1 |
|
27 |
26
|
fveq2d |
|
28 |
27
|
oveq1d |
|
29 |
|
oveq1 |
|
30 |
|
sq1 |
|
31 |
29 30
|
eqtrdi |
|
32 |
28 31
|
sylan9eq |
|
33 |
25 32
|
eqtrid |
|
34 |
|
pjcjt2 |
|
35 |
34
|
imp |
|
36 |
35
|
fveq2d |
|
37 |
36
|
oveq1d |
|
38 |
|
pjopyth |
|
39 |
38
|
imp |
|
40 |
37 39
|
eqtrd |
|
41 |
|
chjcl |
|
42 |
41
|
3adant3 |
|
43 |
42
|
adantr |
|
44 |
1
|
strlem2 |
|
45 |
43 44
|
syl |
|
46 |
|
3simpa |
|
47 |
46
|
adantr |
|
48 |
1
|
strlem2 |
|
49 |
1
|
strlem2 |
|
50 |
48 49
|
oveqan12d |
|
51 |
47 50
|
syl |
|
52 |
40 45 51
|
3eqtr4d |
|
53 |
52
|
3exp1 |
|
54 |
53
|
com3r |
|
55 |
54
|
adantr |
|
56 |
55
|
ralrimdv |
|
57 |
56
|
ralrimiv |
|
58 |
|
isst |
|
59 |
22 33 57 58
|
syl3anbrc |
|