Metamath Proof Explorer


Theorem strlem2

Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis strlem2.1 S = x C norm proj x u 2
Assertion strlem2 C C S C = norm proj C u 2

Proof

Step Hyp Ref Expression
1 strlem2.1 S = x C norm proj x u 2
2 fveq2 x = C proj x = proj C
3 2 fveq1d x = C proj x u = proj C u
4 3 fveq2d x = C norm proj x u = norm proj C u
5 4 oveq1d x = C norm proj x u 2 = norm proj C u 2
6 ovex norm proj C u 2 V
7 5 1 6 fvmpt C C S C = norm proj C u 2