| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem2.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( projℎ ‘ 𝑥 )  =  ( projℎ ‘ 𝐶 ) ) | 
						
							| 3 | 2 | fveq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  =  ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑥  =  𝐶  →  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  =  ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 6 |  | ovex | ⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ↑ 2 )  ∈  V | 
						
							| 7 | 5 1 6 | fvmpt | ⊢ ( 𝐶  ∈   Cℋ   →  ( 𝑆 ‘ 𝐶 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) ) |