Step |
Hyp |
Ref |
Expression |
1 |
|
strlem2.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( projℎ ‘ 𝑥 ) = ( projℎ ‘ 𝐶 ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝑥 = 𝐶 → ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) = ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = 𝐶 → ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝐶 → ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
6 |
|
ovex |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) ∈ V |
7 |
5 1 6
|
fvmpt |
⊢ ( 𝐶 ∈ Cℋ → ( 𝑆 ‘ 𝐶 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) ) |