Metamath Proof Explorer


Theorem strlem2

Description: Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis strlem2.1 𝑆 = ( 𝑥C ↦ ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) )
Assertion strlem2 ( 𝐶C → ( 𝑆𝐶 ) = ( ( norm ‘ ( ( proj𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 strlem2.1 𝑆 = ( 𝑥C ↦ ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) )
2 fveq2 ( 𝑥 = 𝐶 → ( proj𝑥 ) = ( proj𝐶 ) )
3 2 fveq1d ( 𝑥 = 𝐶 → ( ( proj𝑥 ) ‘ 𝑢 ) = ( ( proj𝐶 ) ‘ 𝑢 ) )
4 3 fveq2d ( 𝑥 = 𝐶 → ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) = ( norm ‘ ( ( proj𝐶 ) ‘ 𝑢 ) ) )
5 4 oveq1d ( 𝑥 = 𝐶 → ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) = ( ( norm ‘ ( ( proj𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) )
6 ovex ( ( norm ‘ ( ( proj𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) ∈ V
7 5 1 6 fvmpt ( 𝐶C → ( 𝑆𝐶 ) = ( ( norm ‘ ( ( proj𝐶 ) ‘ 𝑢 ) ) ↑ 2 ) )