| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem3a.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑥  ∈   Cℋ   →  𝑥  ∈   Cℋ  ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  𝑢  ∈   ℋ ) | 
						
							| 4 |  | pjhcl | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 5 | 2 3 4 | syl2anr | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 6 |  | normcl | ⊢ ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 8 | 7 | resqcld | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 9 | 7 | sqge0d | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  0  ≤  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 10 |  | normge0 | ⊢ ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ) | 
						
							| 11 | 5 10 | syl | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ) | 
						
							| 12 |  | pjnorm | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ≤  ( normℎ ‘ 𝑢 ) ) | 
						
							| 13 | 2 3 12 | syl2anr | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ≤  ( normℎ ‘ 𝑢 ) ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( normℎ ‘ 𝑢 )  =  1 ) | 
						
							| 15 | 13 14 | breqtrd | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ≤  1 ) | 
						
							| 16 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 17 |  | exple1 | ⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∧  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ≤  1 )  ∧  2  ∈  ℕ0 )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ≤  1 ) | 
						
							| 18 | 16 17 | mpan2 | ⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ∧  ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) )  ≤  1 )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ≤  1 ) | 
						
							| 19 | 7 11 15 18 | syl3anc | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ≤  1 ) | 
						
							| 20 |  | elicc01 | ⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ∈  ( 0 [,] 1 )  ↔  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ∧  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ≤  1 ) ) | 
						
							| 21 | 8 9 19 20 | syl3anbrc | ⊢ ( ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  ∧  𝑥  ∈   Cℋ  )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 22 | 21 1 | fmptd | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  𝑆 :  Cℋ  ⟶ ( 0 [,] 1 ) ) | 
						
							| 23 |  | helch | ⊢  ℋ  ∈   Cℋ | 
						
							| 24 | 1 | strlem2 | ⊢ (  ℋ  ∈   Cℋ   →  ( 𝑆 ‘  ℋ )  =  ( ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ ( 𝑆 ‘  ℋ )  =  ( ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) ) ↑ 2 ) | 
						
							| 26 |  | pjch1 | ⊢ ( 𝑢  ∈   ℋ  →  ( ( projℎ ‘  ℋ ) ‘ 𝑢 )  =  𝑢 ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝑢  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) )  =  ( normℎ ‘ 𝑢 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝑢  ∈   ℋ  →  ( ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) ) ↑ 2 )  =  ( ( normℎ ‘ 𝑢 ) ↑ 2 ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( ( normℎ ‘ 𝑢 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 30 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( ( normℎ ‘ 𝑢 ) ↑ 2 )  =  1 ) | 
						
							| 32 | 28 31 | sylan9eq | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( ( normℎ ‘ ( ( projℎ ‘  ℋ ) ‘ 𝑢 ) ) ↑ 2 )  =  1 ) | 
						
							| 33 | 25 32 | eqtrid | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑆 ‘  ℋ )  =  1 ) | 
						
							| 34 |  | pjcjt2 | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 )  =  ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( normℎ ‘ ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) )  =  ( normℎ ‘ ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( normℎ ‘ ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) ↑ 2 )  =  ( ( normℎ ‘ ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) ↑ 2 ) ) | 
						
							| 38 |  | pjopyth | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( ( normℎ ‘ ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ↑ 2 ) ) ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( normℎ ‘ ( ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 )  +ℎ  ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ↑ 2 ) ) ) | 
						
							| 40 | 37 39 | eqtrd | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( normℎ ‘ ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ↑ 2 ) ) ) | 
						
							| 41 |  | chjcl | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  )  →  ( 𝑧  ∨ℋ  𝑤 )  ∈   Cℋ  ) | 
						
							| 42 | 41 | 3adant3 | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑧  ∨ℋ  𝑤 )  ∈   Cℋ  ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( 𝑧  ∨ℋ  𝑤 )  ∈   Cℋ  ) | 
						
							| 44 | 1 | strlem2 | ⊢ ( ( 𝑧  ∨ℋ  𝑤 )  ∈   Cℋ   →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( normℎ ‘ ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( normℎ ‘ ( ( projℎ ‘ ( 𝑧  ∨ℋ  𝑤 ) ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 46 |  | 3simpa | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  ) ) | 
						
							| 48 | 1 | strlem2 | ⊢ ( 𝑧  ∈   Cℋ   →  ( 𝑆 ‘ 𝑧 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 49 | 1 | strlem2 | ⊢ ( 𝑤  ∈   Cℋ   →  ( 𝑆 ‘ 𝑤 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 50 | 48 49 | oveqan12d | ⊢ ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ↑ 2 ) ) ) | 
						
							| 51 | 47 50 | syl | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) )  =  ( ( ( normℎ ‘ ( ( projℎ ‘ 𝑧 ) ‘ 𝑢 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( ( projℎ ‘ 𝑤 ) ‘ 𝑢 ) ) ↑ 2 ) ) ) | 
						
							| 52 | 40 45 51 | 3eqtr4d | ⊢ ( ( ( 𝑧  ∈   Cℋ   ∧  𝑤  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  ∧  𝑧  ⊆  ( ⊥ ‘ 𝑤 ) )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) | 
						
							| 53 | 52 | 3exp1 | ⊢ ( 𝑧  ∈   Cℋ   →  ( 𝑤  ∈   Cℋ   →  ( 𝑢  ∈   ℋ  →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 54 | 53 | com3r | ⊢ ( 𝑢  ∈   ℋ  →  ( 𝑧  ∈   Cℋ   →  ( 𝑤  ∈   Cℋ   →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑧  ∈   Cℋ   →  ( 𝑤  ∈   Cℋ   →  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 56 | 55 | ralrimdv | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑧  ∈   Cℋ   →  ∀ 𝑤  ∈   Cℋ  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) ) ) | 
						
							| 57 | 56 | ralrimiv | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ∀ 𝑧  ∈   Cℋ  ∀ 𝑤  ∈   Cℋ  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) ) | 
						
							| 58 |  | isst | ⊢ ( 𝑆  ∈  States  ↔  ( 𝑆 :  Cℋ  ⟶ ( 0 [,] 1 )  ∧  ( 𝑆 ‘  ℋ )  =  1  ∧  ∀ 𝑧  ∈   Cℋ  ∀ 𝑤  ∈   Cℋ  ( 𝑧  ⊆  ( ⊥ ‘ 𝑤 )  →  ( 𝑆 ‘ ( 𝑧  ∨ℋ  𝑤 ) )  =  ( ( 𝑆 ‘ 𝑧 )  +  ( 𝑆 ‘ 𝑤 ) ) ) ) ) | 
						
							| 59 | 22 33 57 58 | syl3anbrc | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  𝑆  ∈  States ) |