Step |
Hyp |
Ref |
Expression |
1 |
|
strlem2.1 |
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
2 |
|
fveq2 |
|- ( x = C -> ( projh ` x ) = ( projh ` C ) ) |
3 |
2
|
fveq1d |
|- ( x = C -> ( ( projh ` x ) ` u ) = ( ( projh ` C ) ` u ) ) |
4 |
3
|
fveq2d |
|- ( x = C -> ( normh ` ( ( projh ` x ) ` u ) ) = ( normh ` ( ( projh ` C ) ` u ) ) ) |
5 |
4
|
oveq1d |
|- ( x = C -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) = ( ( normh ` ( ( projh ` C ) ` u ) ) ^ 2 ) ) |
6 |
|
ovex |
|- ( ( normh ` ( ( projh ` C ) ` u ) ) ^ 2 ) e. _V |
7 |
5 1 6
|
fvmpt |
|- ( C e. CH -> ( S ` C ) = ( ( normh ` ( ( projh ` C ) ` u ) ) ^ 2 ) ) |