| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem2.1 |  |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) | 
						
							| 2 |  | fveq2 |  |-  ( x = C -> ( projh ` x ) = ( projh ` C ) ) | 
						
							| 3 | 2 | fveq1d |  |-  ( x = C -> ( ( projh ` x ) ` u ) = ( ( projh ` C ) ` u ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( x = C -> ( normh ` ( ( projh ` x ) ` u ) ) = ( normh ` ( ( projh ` C ) ` u ) ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( x = C -> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) = ( ( normh ` ( ( projh ` C ) ` u ) ) ^ 2 ) ) | 
						
							| 6 |  | ovex |  |-  ( ( normh ` ( ( projh ` C ) ` u ) ) ^ 2 ) e. _V | 
						
							| 7 | 5 1 6 | fvmpt |  |-  ( C e. CH -> ( S ` C ) = ( ( normh ` ( ( projh ` C ) ` u ) ) ^ 2 ) ) |