Metamath Proof Explorer


Theorem pjopyth

Description: Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjopyth HCGCAHGnormprojHA+projGA2=normprojHA2+normprojGA2

Proof

Step Hyp Ref Expression
1 sseq1 H=ifHCHHGifHCHG
2 fveq2 H=ifHCHprojH=projifHCH
3 2 fveq1d H=ifHCHprojHA=projifHCHA
4 3 oveq1d H=ifHCHprojHA+projGA=projifHCHA+projGA
5 4 fveq2d H=ifHCHnormprojHA+projGA=normprojifHCHA+projGA
6 5 oveq1d H=ifHCHnormprojHA+projGA2=normprojifHCHA+projGA2
7 3 fveq2d H=ifHCHnormprojHA=normprojifHCHA
8 7 oveq1d H=ifHCHnormprojHA2=normprojifHCHA2
9 8 oveq1d H=ifHCHnormprojHA2+normprojGA2=normprojifHCHA2+normprojGA2
10 6 9 eqeq12d H=ifHCHnormprojHA+projGA2=normprojHA2+normprojGA2normprojifHCHA+projGA2=normprojifHCHA2+normprojGA2
11 1 10 imbi12d H=ifHCHHGnormprojHA+projGA2=normprojHA2+normprojGA2ifHCHGnormprojifHCHA+projGA2=normprojifHCHA2+normprojGA2
12 fveq2 G=ifGCGG=ifGCG
13 12 sseq2d G=ifGCGifHCHGifHCHifGCG
14 fveq2 G=ifGCGprojG=projifGCG
15 14 fveq1d G=ifGCGprojGA=projifGCGA
16 15 oveq2d G=ifGCGprojifHCHA+projGA=projifHCHA+projifGCGA
17 16 fveq2d G=ifGCGnormprojifHCHA+projGA=normprojifHCHA+projifGCGA
18 17 oveq1d G=ifGCGnormprojifHCHA+projGA2=normprojifHCHA+projifGCGA2
19 15 fveq2d G=ifGCGnormprojGA=normprojifGCGA
20 19 oveq1d G=ifGCGnormprojGA2=normprojifGCGA2
21 20 oveq2d G=ifGCGnormprojifHCHA2+normprojGA2=normprojifHCHA2+normprojifGCGA2
22 18 21 eqeq12d G=ifGCGnormprojifHCHA+projGA2=normprojifHCHA2+normprojGA2normprojifHCHA+projifGCGA2=normprojifHCHA2+normprojifGCGA2
23 13 22 imbi12d G=ifGCGifHCHGnormprojifHCHA+projGA2=normprojifHCHA2+normprojGA2ifHCHifGCGnormprojifHCHA+projifGCGA2=normprojifHCHA2+normprojifGCGA2
24 fveq2 A=ifAA0projifHCHA=projifHCHifAA0
25 fveq2 A=ifAA0projifGCGA=projifGCGifAA0
26 24 25 oveq12d A=ifAA0projifHCHA+projifGCGA=projifHCHifAA0+projifGCGifAA0
27 26 fveq2d A=ifAA0normprojifHCHA+projifGCGA=normprojifHCHifAA0+projifGCGifAA0
28 27 oveq1d A=ifAA0normprojifHCHA+projifGCGA2=normprojifHCHifAA0+projifGCGifAA02
29 24 fveq2d A=ifAA0normprojifHCHA=normprojifHCHifAA0
30 29 oveq1d A=ifAA0normprojifHCHA2=normprojifHCHifAA02
31 25 fveq2d A=ifAA0normprojifGCGA=normprojifGCGifAA0
32 31 oveq1d A=ifAA0normprojifGCGA2=normprojifGCGifAA02
33 30 32 oveq12d A=ifAA0normprojifHCHA2+normprojifGCGA2=normprojifHCHifAA02+normprojifGCGifAA02
34 28 33 eqeq12d A=ifAA0normprojifHCHA+projifGCGA2=normprojifHCHA2+normprojifGCGA2normprojifHCHifAA0+projifGCGifAA02=normprojifHCHifAA02+normprojifGCGifAA02
35 34 imbi2d A=ifAA0ifHCHifGCGnormprojifHCHA+projifGCGA2=normprojifHCHA2+normprojifGCGA2ifHCHifGCGnormprojifHCHifAA0+projifGCGifAA02=normprojifHCHifAA02+normprojifGCGifAA02
36 ifchhv ifHCHC
37 ifchhv ifGCGC
38 ifhvhv0 ifAA0
39 36 37 38 pjopythi ifHCHifGCGnormprojifHCHifAA0+projifGCGifAA02=normprojifHCHifAA02+normprojifGCGifAA02
40 11 23 35 39 dedth3h HCGCAHGnormprojHA+projGA2=normprojHA2+normprojGA2