Description: Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjopyth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |
|
2 | fveq2 | |
|
3 | 2 | fveq1d | |
4 | 3 | oveq1d | |
5 | 4 | fveq2d | |
6 | 5 | oveq1d | |
7 | 3 | fveq2d | |
8 | 7 | oveq1d | |
9 | 8 | oveq1d | |
10 | 6 9 | eqeq12d | |
11 | 1 10 | imbi12d | |
12 | fveq2 | |
|
13 | 12 | sseq2d | |
14 | fveq2 | |
|
15 | 14 | fveq1d | |
16 | 15 | oveq2d | |
17 | 16 | fveq2d | |
18 | 17 | oveq1d | |
19 | 15 | fveq2d | |
20 | 19 | oveq1d | |
21 | 20 | oveq2d | |
22 | 18 21 | eqeq12d | |
23 | 13 22 | imbi12d | |
24 | fveq2 | |
|
25 | fveq2 | |
|
26 | 24 25 | oveq12d | |
27 | 26 | fveq2d | |
28 | 27 | oveq1d | |
29 | 24 | fveq2d | |
30 | 29 | oveq1d | |
31 | 25 | fveq2d | |
32 | 31 | oveq1d | |
33 | 30 32 | oveq12d | |
34 | 28 33 | eqeq12d | |
35 | 34 | imbi2d | |
36 | ifchhv | |
|
37 | ifchhv | |
|
38 | ifhvhv0 | |
|
39 | 36 37 38 | pjopythi | |
40 | 11 23 35 39 | dedth3h | |