| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subccat.1 |
|- D = ( C |`cat J ) |
| 2 |
|
subccat.j |
|- ( ph -> J e. ( Subcat ` C ) ) |
| 3 |
|
subccatid.1 |
|- ( ph -> J Fn ( S X. S ) ) |
| 4 |
|
subccatid.2 |
|- .1. = ( Id ` C ) |
| 5 |
|
subcid.x |
|- ( ph -> X e. S ) |
| 6 |
1 2 3 4
|
subccatid |
|- ( ph -> ( D e. Cat /\ ( Id ` D ) = ( x e. S |-> ( .1. ` x ) ) ) ) |
| 7 |
6
|
simprd |
|- ( ph -> ( Id ` D ) = ( x e. S |-> ( .1. ` x ) ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
| 9 |
8
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( .1. ` x ) = ( .1. ` X ) ) |
| 10 |
|
fvexd |
|- ( ph -> ( .1. ` X ) e. _V ) |
| 11 |
7 9 5 10
|
fvmptd |
|- ( ph -> ( ( Id ` D ) ` X ) = ( .1. ` X ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( .1. ` X ) = ( ( Id ` D ) ` X ) ) |