Description: Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | submgmmgm.h | |- H = ( M |`s S ) |
|
Assertion | submgmmgm | |- ( S e. ( SubMgm ` M ) -> H e. Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmmgm.h | |- H = ( M |`s S ) |
|
2 | submgmrcl | |- ( S e. ( SubMgm ` M ) -> M e. Mgm ) |
|
3 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
4 | 3 1 | issubmgm2 | |- ( M e. Mgm -> ( S e. ( SubMgm ` M ) <-> ( S C_ ( Base ` M ) /\ H e. Mgm ) ) ) |
5 | 2 4 | syl | |- ( S e. ( SubMgm ` M ) -> ( S e. ( SubMgm ` M ) <-> ( S C_ ( Base ` M ) /\ H e. Mgm ) ) ) |
6 | 5 | ibi | |- ( S e. ( SubMgm ` M ) -> ( S C_ ( Base ` M ) /\ H e. Mgm ) ) |
7 | 6 | simprd | |- ( S e. ( SubMgm ` M ) -> H e. Mgm ) |