Metamath Proof Explorer


Theorem submgmmgm

Description: Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis submgmmgm.h 𝐻 = ( 𝑀s 𝑆 )
Assertion submgmmgm ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝐻 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 submgmmgm.h 𝐻 = ( 𝑀s 𝑆 )
2 submgmrcl ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm )
3 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
4 3 1 issubmgm2 ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) )
5 2 4 syl ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) )
6 5 ibi ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) )
7 6 simprd ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝐻 ∈ Mgm )