Description: Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | submgmmgm.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
Assertion | submgmmgm | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝐻 ∈ Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmmgm.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
2 | submgmrcl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm ) | |
3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
4 | 3 1 | issubmgm2 | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) ) |
5 | 2 4 | syl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) ) |
6 | 5 | ibi | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) |
7 | 6 | simprd | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝐻 ∈ Mgm ) |