Metamath Proof Explorer


Theorem subreci

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Hypotheses subreci.1
|- A e. CC
subreci.2
|- B e. CC
subreci.3
|- A =/= 0
subreci.4
|- B =/= 0
Assertion subreci
|- ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) )

Proof

Step Hyp Ref Expression
1 subreci.1
 |-  A e. CC
2 subreci.2
 |-  B e. CC
3 subreci.3
 |-  A =/= 0
4 subreci.4
 |-  B =/= 0
5 subrec
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) )
6 1 3 2 4 5 mp4an
 |-  ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) )