| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgvr1.x |
|- X = ( var1 ` R ) |
| 2 |
|
subrgvr1.r |
|- ( ph -> T e. ( SubRing ` R ) ) |
| 3 |
|
subrgvr1.h |
|- H = ( R |`s T ) |
| 4 |
|
eqid |
|- ( 1o mVar R ) = ( 1o mVar R ) |
| 5 |
|
1on |
|- 1o e. On |
| 6 |
5
|
a1i |
|- ( ph -> 1o e. On ) |
| 7 |
4 6 2 3
|
subrgmvr |
|- ( ph -> ( 1o mVar R ) = ( 1o mVar H ) ) |
| 8 |
7
|
fveq1d |
|- ( ph -> ( ( 1o mVar R ) ` (/) ) = ( ( 1o mVar H ) ` (/) ) ) |
| 9 |
1
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
| 10 |
|
eqid |
|- ( var1 ` H ) = ( var1 ` H ) |
| 11 |
10
|
vr1val |
|- ( var1 ` H ) = ( ( 1o mVar H ) ` (/) ) |
| 12 |
8 9 11
|
3eqtr4g |
|- ( ph -> X = ( var1 ` H ) ) |