| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgvr1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 2 |
|
subrgvr1.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 3 |
|
subrgvr1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 4 |
|
eqid |
⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) |
| 5 |
|
1on |
⊢ 1o ∈ On |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
| 7 |
4 6 2 3
|
subrgmvr |
⊢ ( 𝜑 → ( 1o mVar 𝑅 ) = ( 1o mVar 𝐻 ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( 1o mVar 𝑅 ) ‘ ∅ ) = ( ( 1o mVar 𝐻 ) ‘ ∅ ) ) |
| 9 |
1
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 10 |
|
eqid |
⊢ ( var1 ‘ 𝐻 ) = ( var1 ‘ 𝐻 ) |
| 11 |
10
|
vr1val |
⊢ ( var1 ‘ 𝐻 ) = ( ( 1o mVar 𝐻 ) ‘ ∅ ) |
| 12 |
8 9 11
|
3eqtr4g |
⊢ ( 𝜑 → 𝑋 = ( var1 ‘ 𝐻 ) ) |