Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD using translate__without__overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sucidALT.1 | |- A e. _V |
|
Assertion | sucidALT | |- A e. suc A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidALT.1 | |- A e. _V |
|
2 | 1 | snid | |- A e. { A } |
3 | elun1 | |- ( A e. { A } -> A e. ( { A } u. A ) ) |
|
4 | 2 3 | ax-mp | |- A e. ( { A } u. A ) |
5 | df-suc | |- suc A = ( A u. { A } ) |
|
6 | 5 | equncomi | |- suc A = ( { A } u. A ) |
7 | 4 6 | eleqtrri | |- A e. suc A |