Metamath Proof Explorer


Theorem sucidALT

Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD using translate__without__overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sucidALT.1
|- A e. _V
Assertion sucidALT
|- A e. suc A

Proof

Step Hyp Ref Expression
1 sucidALT.1
 |-  A e. _V
2 1 snid
 |-  A e. { A }
3 elun1
 |-  ( A e. { A } -> A e. ( { A } u. A ) )
4 2 3 ax-mp
 |-  A e. ( { A } u. A )
5 df-suc
 |-  suc A = ( A u. { A } )
6 5 equncomi
 |-  suc A = ( { A } u. A )
7 4 6 eleqtrri
 |-  A e. suc A