Step |
Hyp |
Ref |
Expression |
1 |
|
suprlubrd.1 |
|- ( ph -> A C_ RR ) |
2 |
|
suprlubrd.2 |
|- ( ph -> A =/= (/) ) |
3 |
|
suprlubrd.3 |
|- ( ph -> E. x e. RR A. y e. A y <_ x ) |
4 |
|
suprlubrd.4 |
|- ( ph -> B e. RR ) |
5 |
|
suprlubrd.5 |
|- ( ph -> E. z e. A B < z ) |
6 |
|
suprlub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) ) |
7 |
1 2 3 4 6
|
syl31anc |
|- ( ph -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) ) |
8 |
7
|
bicomd |
|- ( ph -> ( E. z e. A B < z <-> B < sup ( A , RR , < ) ) ) |
9 |
8
|
biimpd |
|- ( ph -> ( E. z e. A B < z -> B < sup ( A , RR , < ) ) ) |
10 |
9
|
imp |
|- ( ( ph /\ E. z e. A B < z ) -> B < sup ( A , RR , < ) ) |
11 |
5 10
|
mpdan |
|- ( ph -> B < sup ( A , RR , < ) ) |