Metamath Proof Explorer


Theorem suprlubrd

Description: Natural deduction form of specialized suprlub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprlubrd.1
|- ( ph -> A C_ RR )
suprlubrd.2
|- ( ph -> A =/= (/) )
suprlubrd.3
|- ( ph -> E. x e. RR A. y e. A y <_ x )
suprlubrd.4
|- ( ph -> B e. RR )
suprlubrd.5
|- ( ph -> E. z e. A B < z )
Assertion suprlubrd
|- ( ph -> B < sup ( A , RR , < ) )

Proof

Step Hyp Ref Expression
1 suprlubrd.1
 |-  ( ph -> A C_ RR )
2 suprlubrd.2
 |-  ( ph -> A =/= (/) )
3 suprlubrd.3
 |-  ( ph -> E. x e. RR A. y e. A y <_ x )
4 suprlubrd.4
 |-  ( ph -> B e. RR )
5 suprlubrd.5
 |-  ( ph -> E. z e. A B < z )
6 suprlub
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) )
7 1 2 3 4 6 syl31anc
 |-  ( ph -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) )
8 7 bicomd
 |-  ( ph -> ( E. z e. A B < z <-> B < sup ( A , RR , < ) ) )
9 8 biimpd
 |-  ( ph -> ( E. z e. A B < z -> B < sup ( A , RR , < ) ) )
10 9 imp
 |-  ( ( ph /\ E. z e. A B < z ) -> B < sup ( A , RR , < ) )
11 5 10 mpdan
 |-  ( ph -> B < sup ( A , RR , < ) )