Metamath Proof Explorer


Theorem suprlubrd

Description: Natural deduction form of specialized suprlub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprlubrd.1 ( 𝜑𝐴 ⊆ ℝ )
suprlubrd.2 ( 𝜑𝐴 ≠ ∅ )
suprlubrd.3 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
suprlubrd.4 ( 𝜑𝐵 ∈ ℝ )
suprlubrd.5 ( 𝜑 → ∃ 𝑧𝐴 𝐵 < 𝑧 )
Assertion suprlubrd ( 𝜑𝐵 < sup ( 𝐴 , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 suprlubrd.1 ( 𝜑𝐴 ⊆ ℝ )
2 suprlubrd.2 ( 𝜑𝐴 ≠ ∅ )
3 suprlubrd.3 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
4 suprlubrd.4 ( 𝜑𝐵 ∈ ℝ )
5 suprlubrd.5 ( 𝜑 → ∃ 𝑧𝐴 𝐵 < 𝑧 )
6 suprlub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )
7 1 2 3 4 6 syl31anc ( 𝜑 → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧𝐴 𝐵 < 𝑧 ) )
8 7 bicomd ( 𝜑 → ( ∃ 𝑧𝐴 𝐵 < 𝑧𝐵 < sup ( 𝐴 , ℝ , < ) ) )
9 8 biimpd ( 𝜑 → ( ∃ 𝑧𝐴 𝐵 < 𝑧𝐵 < sup ( 𝐴 , ℝ , < ) ) )
10 9 imp ( ( 𝜑 ∧ ∃ 𝑧𝐴 𝐵 < 𝑧 ) → 𝐵 < sup ( 𝐴 , ℝ , < ) )
11 5 10 mpdan ( 𝜑𝐵 < sup ( 𝐴 , ℝ , < ) )