Step |
Hyp |
Ref |
Expression |
1 |
|
suprlubrd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
suprlubrd.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
suprlubrd.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
4 |
|
suprlubrd.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
suprlubrd.5 |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) |
6 |
|
suprlub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) ) |
7 |
1 2 3 4 6
|
syl31anc |
⊢ ( 𝜑 → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) ) |
8 |
7
|
bicomd |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ↔ 𝐵 < sup ( 𝐴 , ℝ , < ) ) ) |
9 |
8
|
biimpd |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 → 𝐵 < sup ( 𝐴 , ℝ , < ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) → 𝐵 < sup ( 𝐴 , ℝ , < ) ) |
11 |
5 10
|
mpdan |
⊢ ( 𝜑 → 𝐵 < sup ( 𝐴 , ℝ , < ) ) |