Step |
Hyp |
Ref |
Expression |
1 |
|
imo72b2lem1.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
imo72b2lem1.7 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) |
3 |
|
imo72b2lem1.6 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 1 ) |
4 |
|
imaco |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) ) |
5 |
|
imassrn |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) |
6 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
7 |
6
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
9 |
8
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
10 |
7 9
|
fssresd |
⊢ ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ ) |
11 |
1 10
|
fco2d |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ ) |
12 |
11
|
frnd |
⊢ ( 𝜑 → ran ( abs ∘ 𝐹 ) ⊆ ℝ ) |
13 |
5 12
|
sstrid |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ℝ ) |
14 |
4 13
|
eqsstrrid |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ ) |
15 |
|
0re |
⊢ 0 ∈ ℝ |
16 |
15
|
ne0ii |
⊢ ℝ ≠ ∅ |
17 |
16
|
a1i |
⊢ ( 𝜑 → ℝ ≠ ∅ ) |
18 |
17 11
|
wnefimgd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ ) |
19 |
4 18
|
eqnetrrid |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ ) |
20 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → 𝑐 = 1 ) |
22 |
21
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → ( 𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 1 ) ) |
23 |
22
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → ( ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 𝑐 ↔ ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 1 ) ) |
24 |
1 3
|
extoimad |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 1 ) |
25 |
20 23 24
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 𝑐 ) |
26 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → 𝑥 ∈ ℝ ) |
29 |
27 28
|
fvco3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
11
|
funfvima2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
31 |
30
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
32 |
31 4
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
33 |
29 32
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑧 = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑧 = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
34
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑧 = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ( 0 < 𝑧 ↔ 0 < ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
36 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
37 |
36
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
39 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ 0 ) |
40 |
38 39
|
absrpcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ+ ) |
41 |
40
|
rpgt0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → 0 < ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
42 |
33 35 41
|
rspcedvd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) → ∃ 𝑧 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 0 < 𝑧 ) |
43 |
2 42
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 0 < 𝑧 ) |
44 |
14 19 25 26 43
|
suprlubrd |
⊢ ( 𝜑 → 0 < sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |