| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imo72b2lem1.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | imo72b2lem1.7 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ≠  0 ) | 
						
							| 3 |  | imo72b2lem1.6 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1 ) | 
						
							| 4 |  | imaco | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  =  ( abs  “  ( 𝐹  “  ℝ ) ) | 
						
							| 5 |  | imassrn | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ran  ( abs  ∘  𝐹 ) | 
						
							| 6 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  abs : ℂ ⟶ ℝ ) | 
						
							| 8 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 10 | 7 9 | fssresd | ⊢ ( 𝜑  →  ( abs  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 11 | 1 10 | fco2d | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 ) : ℝ ⟶ ℝ ) | 
						
							| 12 | 11 | frnd | ⊢ ( 𝜑  →  ran  ( abs  ∘  𝐹 )  ⊆  ℝ ) | 
						
							| 13 | 5 12 | sstrid | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ℝ ) | 
						
							| 14 | 4 13 | eqsstrrid | ⊢ ( 𝜑  →  ( abs  “  ( 𝐹  “  ℝ ) )  ⊆  ℝ ) | 
						
							| 15 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 16 | 15 | ne0ii | ⊢ ℝ  ≠  ∅ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ℝ  ≠  ∅ ) | 
						
							| 18 | 17 11 | wnefimgd | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ≠  ∅ ) | 
						
							| 19 | 4 18 | eqnetrrid | ⊢ ( 𝜑  →  ( abs  “  ( 𝐹  “  ℝ ) )  ≠  ∅ ) | 
						
							| 20 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  =  1 )  →  𝑐  =  1 ) | 
						
							| 22 | 21 | breq2d | ⊢ ( ( 𝜑  ∧  𝑐  =  1 )  →  ( 𝑡  ≤  𝑐  ↔  𝑡  ≤  1 ) ) | 
						
							| 23 | 22 | ralbidv | ⊢ ( ( 𝜑  ∧  𝑐  =  1 )  →  ( ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  𝑐  ↔  ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  1 ) ) | 
						
							| 24 | 1 3 | extoimad | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  1 ) | 
						
							| 25 | 20 23 24 | rspcedvd | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  𝑐 ) | 
						
							| 26 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 27 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 28 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 29 | 27 28 | fvco3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 30 | 11 | funfvima2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ∈  ( ( abs  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 31 | 30 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ∈  ( ( abs  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 32 | 31 4 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) ) | 
						
							| 33 | 29 32 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  ∧  𝑧  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  →  𝑧  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | breq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  ∧  𝑧  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  →  ( 0  <  𝑧  ↔  0  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 37 | 36 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 38 | 37 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 39 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  0 ) | 
						
							| 40 | 38 39 | absrpcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 41 | 40 | rpgt0d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  0  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 | 33 35 41 | rspcedvd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ≠  0 ) )  →  ∃ 𝑧  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 0  <  𝑧 ) | 
						
							| 43 | 2 42 | rexlimddv | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 0  <  𝑧 ) | 
						
							| 44 | 14 19 25 26 43 | suprlubrd | ⊢ ( 𝜑  →  0  <  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) |