Metamath Proof Explorer


Theorem imo72b2lem1

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem1.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
imo72b2lem1.7 ( 𝜑 → ∃ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ≠ 0 )
imo72b2lem1.6 ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 1 )
Assertion imo72b2lem1 ( 𝜑 → 0 < sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 imo72b2lem1.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
2 imo72b2lem1.7 ( 𝜑 → ∃ 𝑥 ∈ ℝ ( 𝐹𝑥 ) ≠ 0 )
3 imo72b2lem1.6 ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 1 )
4 imaco ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) )
5 imassrn ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 )
6 absf abs : ℂ ⟶ ℝ
7 6 a1i ( 𝜑 → abs : ℂ ⟶ ℝ )
8 ax-resscn ℝ ⊆ ℂ
9 8 a1i ( 𝜑 → ℝ ⊆ ℂ )
10 7 9 fssresd ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ )
11 1 10 fco2d ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ )
12 11 frnd ( 𝜑 → ran ( abs ∘ 𝐹 ) ⊆ ℝ )
13 5 12 sstrid ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ℝ )
14 4 13 eqsstrrid ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ )
15 0re 0 ∈ ℝ
16 15 ne0ii ℝ ≠ ∅
17 16 a1i ( 𝜑 → ℝ ≠ ∅ )
18 17 11 wnefimgd ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ )
19 4 18 eqnetrrid ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ )
20 1red ( 𝜑 → 1 ∈ ℝ )
21 simpr ( ( 𝜑𝑐 = 1 ) → 𝑐 = 1 )
22 21 breq2d ( ( 𝜑𝑐 = 1 ) → ( 𝑡𝑐𝑡 ≤ 1 ) )
23 22 ralbidv ( ( 𝜑𝑐 = 1 ) → ( ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡𝑐 ↔ ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 1 ) )
24 1 3 extoimad ( 𝜑 → ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 1 )
25 20 23 24 rspcedvd ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡𝑐 )
26 0red ( 𝜑 → 0 ∈ ℝ )
27 1 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → 𝐹 : ℝ ⟶ ℝ )
28 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → 𝑥 ∈ ℝ )
29 27 28 fvco3d ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹𝑥 ) ) )
30 11 funfvima2d ( ( 𝜑𝑥 ∈ ℝ ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) )
31 30 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) )
32 31 4 eleqtrdi ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) )
33 29 32 eqeltrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( abs ‘ ( 𝐹𝑥 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) )
34 simpr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) ∧ 𝑧 = ( abs ‘ ( 𝐹𝑥 ) ) ) → 𝑧 = ( abs ‘ ( 𝐹𝑥 ) ) )
35 34 breq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) ∧ 𝑧 = ( abs ‘ ( 𝐹𝑥 ) ) ) → ( 0 < 𝑧 ↔ 0 < ( abs ‘ ( 𝐹𝑥 ) ) ) )
36 1 ffvelrnda ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹𝑥 ) ∈ ℝ )
37 36 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
38 37 recnd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
39 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( 𝐹𝑥 ) ≠ 0 )
40 38 39 absrpcld ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ+ )
41 40 rpgt0d ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → 0 < ( abs ‘ ( 𝐹𝑥 ) ) )
42 33 35 41 rspcedvd ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹𝑥 ) ≠ 0 ) ) → ∃ 𝑧 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 0 < 𝑧 )
43 2 42 rexlimddv ( 𝜑 → ∃ 𝑧 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 0 < 𝑧 )
44 14 19 25 26 43 suprlubrd ( 𝜑 → 0 < sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )