Metamath Proof Explorer
Description: The image of a mapping from A is nonempty if A is nonempty.
(Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
wnefimgd.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
|
|
wnefimgd.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
wnefimgd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ≠ ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wnefimgd.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 2 |
|
wnefimgd.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 4 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 5 |
3 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 6 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝐴 ) = 𝐴 ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝐴 ) = 𝐴 ) |
| 8 |
7 1
|
eqnetrd |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝐴 ) ≠ ∅ ) |
| 9 |
8
|
imadisjlnd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ≠ ∅ ) |