Metamath Proof Explorer
		
		
		
		Description:  The image of a mapping from A is nonempty if A is nonempty.
       (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wnefimgd.1 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
					
						|  |  | wnefimgd.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
				
					|  | Assertion | wnefimgd | ⊢  ( 𝜑  →  ( 𝐹  “  𝐴 )  ≠  ∅ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wnefimgd.1 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 2 |  | wnefimgd.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 4 | 2 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 5 | 3 4 | sseqtrrid | ⊢ ( 𝜑  →  𝐴  ⊆  dom  𝐹 ) | 
						
							| 6 |  | sseqin2 | ⊢ ( 𝐴  ⊆  dom  𝐹  ↔  ( dom  𝐹  ∩  𝐴 )  =  𝐴 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  𝐴 )  =  𝐴 ) | 
						
							| 8 | 7 1 | eqnetrd | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 9 | 8 | imadisjlnd | ⊢ ( 𝜑  →  ( 𝐹  “  𝐴 )  ≠  ∅ ) |