Metamath Proof Explorer


Theorem wnefimgd

Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wnefimgd.1 ( 𝜑𝐴 ≠ ∅ )
wnefimgd.2 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion wnefimgd ( 𝜑 → ( 𝐹𝐴 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 wnefimgd.1 ( 𝜑𝐴 ≠ ∅ )
2 wnefimgd.2 ( 𝜑𝐹 : 𝐴𝐵 )
3 ssid 𝐴𝐴
4 2 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
5 3 4 sseqtrrid ( 𝜑𝐴 ⊆ dom 𝐹 )
6 sseqin2 ( 𝐴 ⊆ dom 𝐹 ↔ ( dom 𝐹𝐴 ) = 𝐴 )
7 5 6 sylib ( 𝜑 → ( dom 𝐹𝐴 ) = 𝐴 )
8 7 1 eqnetrd ( 𝜑 → ( dom 𝐹𝐴 ) ≠ ∅ )
9 8 imadisjlnd ( 𝜑 → ( 𝐹𝐴 ) ≠ ∅ )