Metamath Proof Explorer


Theorem wnefimgd

Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wnefimgd.1
|- ( ph -> A =/= (/) )
wnefimgd.2
|- ( ph -> F : A --> B )
Assertion wnefimgd
|- ( ph -> ( F " A ) =/= (/) )

Proof

Step Hyp Ref Expression
1 wnefimgd.1
 |-  ( ph -> A =/= (/) )
2 wnefimgd.2
 |-  ( ph -> F : A --> B )
3 ssid
 |-  A C_ A
4 2 fdmd
 |-  ( ph -> dom F = A )
5 3 4 sseqtrrid
 |-  ( ph -> A C_ dom F )
6 sseqin2
 |-  ( A C_ dom F <-> ( dom F i^i A ) = A )
7 5 6 sylib
 |-  ( ph -> ( dom F i^i A ) = A )
8 7 1 eqnetrd
 |-  ( ph -> ( dom F i^i A ) =/= (/) )
9 8 imadisjlnd
 |-  ( ph -> ( F " A ) =/= (/) )