Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wnefimgd.1 | |- ( ph -> A =/= (/) ) |
|
| wnefimgd.2 | |- ( ph -> F : A --> B ) |
||
| Assertion | wnefimgd | |- ( ph -> ( F " A ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnefimgd.1 | |- ( ph -> A =/= (/) ) |
|
| 2 | wnefimgd.2 | |- ( ph -> F : A --> B ) |
|
| 3 | ssid | |- A C_ A |
|
| 4 | 2 | fdmd | |- ( ph -> dom F = A ) |
| 5 | 3 4 | sseqtrrid | |- ( ph -> A C_ dom F ) |
| 6 | sseqin2 | |- ( A C_ dom F <-> ( dom F i^i A ) = A ) |
|
| 7 | 5 6 | sylib | |- ( ph -> ( dom F i^i A ) = A ) |
| 8 | 7 1 | eqnetrd | |- ( ph -> ( dom F i^i A ) =/= (/) ) |
| 9 | 8 | imadisjlnd | |- ( ph -> ( F " A ) =/= (/) ) |