Description: Natural deduction form of one negated side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imadisjlnd.1 | |- ( ph -> ( dom A i^i B ) =/= (/) ) |
|
Assertion | imadisjlnd | |- ( ph -> ( A " B ) =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisjlnd.1 | |- ( ph -> ( dom A i^i B ) =/= (/) ) |
|
2 | imadisj | |- ( ( A " B ) = (/) <-> ( dom A i^i B ) = (/) ) |
|
3 | 2 | biimpi | |- ( ( A " B ) = (/) -> ( dom A i^i B ) = (/) ) |
4 | 3 | necon3i | |- ( ( dom A i^i B ) =/= (/) -> ( A " B ) =/= (/) ) |
5 | 1 4 | syl | |- ( ph -> ( A " B ) =/= (/) ) |