Metamath Proof Explorer


Theorem imadisjlnd

Description: Natural deduction form of one negated side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis imadisjlnd.1 φ dom A B
Assertion imadisjlnd φ A B

Proof

Step Hyp Ref Expression
1 imadisjlnd.1 φ dom A B
2 imadisj A B = dom A B =
3 2 biimpi A B = dom A B =
4 3 necon3i dom A B A B
5 1 4 syl φ A B