Metamath Proof Explorer


Theorem wnefimgd

Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wnefimgd.1 φA
wnefimgd.2 φF:AB
Assertion wnefimgd φFA

Proof

Step Hyp Ref Expression
1 wnefimgd.1 φA
2 wnefimgd.2 φF:AB
3 ssid AA
4 2 fdmd φdomF=A
5 3 4 sseqtrrid φAdomF
6 sseqin2 AdomFdomFA=A
7 5 6 sylib φdomFA=A
8 7 1 eqnetrd φdomFA
9 8 imadisjlnd φFA