Metamath Proof Explorer


Theorem fco2d

Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fco2d.1 φ G : A B
fco2d.2 φ F B : B C
Assertion fco2d φ F G : A C

Proof

Step Hyp Ref Expression
1 fco2d.1 φ G : A B
2 fco2d.2 φ F B : B C
3 fco2 F B : B C G : A B F G : A C
4 2 1 3 syl2anc φ F G : A C