Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fco2d.1 | |- ( ph -> G : A --> B ) |
|
fco2d.2 | |- ( ph -> ( F |` B ) : B --> C ) |
||
Assertion | fco2d | |- ( ph -> ( F o. G ) : A --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco2d.1 | |- ( ph -> G : A --> B ) |
|
2 | fco2d.2 | |- ( ph -> ( F |` B ) : B --> C ) |
|
3 | fco2 | |- ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C ) |
|
4 | 2 1 3 | syl2anc | |- ( ph -> ( F o. G ) : A --> C ) |