Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fco2d.1 | |- ( ph -> G : A --> B ) | |
| fco2d.2 | |- ( ph -> ( F |` B ) : B --> C ) | ||
| Assertion | fco2d | |- ( ph -> ( F o. G ) : A --> C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fco2d.1 | |- ( ph -> G : A --> B ) | |
| 2 | fco2d.2 | |- ( ph -> ( F |` B ) : B --> C ) | |
| 3 | fco2 | |- ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C ) | |
| 4 | 2 1 3 | syl2anc | |- ( ph -> ( F o. G ) : A --> C ) |