Metamath Proof Explorer


Theorem fco2d

Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fco2d.1
|- ( ph -> G : A --> B )
fco2d.2
|- ( ph -> ( F |` B ) : B --> C )
Assertion fco2d
|- ( ph -> ( F o. G ) : A --> C )

Proof

Step Hyp Ref Expression
1 fco2d.1
 |-  ( ph -> G : A --> B )
2 fco2d.2
 |-  ( ph -> ( F |` B ) : B --> C )
3 fco2
 |-  ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C )
4 2 1 3 syl2anc
 |-  ( ph -> ( F o. G ) : A --> C )