Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fco2d.1 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
fco2d.2 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) | ||
Assertion | fco2d | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco2d.1 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
2 | fco2d.2 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) | |
3 | fco2 | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) | |
4 | 2 1 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |