Metamath Proof Explorer


Theorem fco2d

Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fco2d.1 ( 𝜑𝐺 : 𝐴𝐵 )
fco2d.2 ( 𝜑 → ( 𝐹𝐵 ) : 𝐵𝐶 )
Assertion fco2d ( 𝜑 → ( 𝐹𝐺 ) : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fco2d.1 ( 𝜑𝐺 : 𝐴𝐵 )
2 fco2d.2 ( 𝜑 → ( 𝐹𝐵 ) : 𝐵𝐶 )
3 fco2 ( ( ( 𝐹𝐵 ) : 𝐵𝐶𝐺 : 𝐴𝐵 ) → ( 𝐹𝐺 ) : 𝐴𝐶 )
4 2 1 3 syl2anc ( 𝜑 → ( 𝐹𝐺 ) : 𝐴𝐶 )