Metamath Proof Explorer


Theorem wfximgfd

Description: The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wfximgfd.1 ( 𝜑𝐶𝐴 )
wfximgfd.2 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion wfximgfd ( 𝜑 → ( 𝐹𝐶 ) ∈ ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 wfximgfd.1 ( 𝜑𝐶𝐴 )
2 wfximgfd.2 ( 𝜑𝐹 : 𝐴𝐵 )
3 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
4 3 1 1 fnfvimad ( 𝜑 → ( 𝐹𝐶 ) ∈ ( 𝐹𝐴 ) )