Metamath Proof Explorer


Theorem wfximgfd

Description: The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wfximgfd.1 φ C A
wfximgfd.2 φ F : A B
Assertion wfximgfd φ F C F A

Proof

Step Hyp Ref Expression
1 wfximgfd.1 φ C A
2 wfximgfd.2 φ F : A B
3 2 ffnd φ F Fn A
4 3 1 1 fnfvimad φ F C F A