Metamath Proof Explorer


Theorem extoimad

Description: If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses extoimad.1 φF:
extoimad.2 φyFyC
Assertion extoimad φxabsFxC

Proof

Step Hyp Ref Expression
1 extoimad.1 φF:
2 extoimad.2 φyFyC
3 1 ffvelcdmda φyFy
4 3 recnd φyFy
5 4 abscld φyFy
6 imaco absF=absF
7 6 a1i φabsF=absF
8 7 eleq2d φxabsFxabsF
9 absf abs:
10 9 a1i φabs:
11 ax-resscn
12 11 a1i φ
13 10 12 fssresd φabs:
14 1 13 fco2d φabsF:
15 14 ffnd φabsFFn
16 ssidd φ
17 15 16 fvelimabd φxabsFyabsFy=x
18 eqcom absFy=xx=absFy
19 18 a1i φabsFy=xx=absFy
20 19 rexbidv φyabsFy=xyx=absFy
21 17 20 bitrd φxabsFyx=absFy
22 1 adantr φyF:
23 simpr φyy
24 22 23 fvco3d φyabsFy=Fy
25 24 eqcomd φyFy=absFy
26 25 eqeq2d φyx=Fyx=absFy
27 26 rexbidva φyx=Fyyx=absFy
28 21 27 bitr4d φxabsFyx=Fy
29 8 28 bitr3d φxabsFyx=Fy
30 simpr φx=Fyx=Fy
31 30 breq1d φx=FyxCFyC
32 5 29 31 ralxfr2d φxabsFxCyFyC
33 2 32 mpbird φxabsFxC