| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extoimad.1 |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | extoimad.2 |  |-  ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ C ) | 
						
							| 3 | 1 | ffvelcdmda |  |-  ( ( ph /\ y e. RR ) -> ( F ` y ) e. RR ) | 
						
							| 4 | 3 | recnd |  |-  ( ( ph /\ y e. RR ) -> ( F ` y ) e. CC ) | 
						
							| 5 | 4 | abscld |  |-  ( ( ph /\ y e. RR ) -> ( abs ` ( F ` y ) ) e. RR ) | 
						
							| 6 |  | imaco |  |-  ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> x e. ( abs " ( F " RR ) ) ) ) | 
						
							| 9 |  | absf |  |-  abs : CC --> RR | 
						
							| 10 | 9 | a1i |  |-  ( ph -> abs : CC --> RR ) | 
						
							| 11 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 12 | 11 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 13 | 10 12 | fssresd |  |-  ( ph -> ( abs |` RR ) : RR --> RR ) | 
						
							| 14 | 1 13 | fco2d |  |-  ( ph -> ( abs o. F ) : RR --> RR ) | 
						
							| 15 | 14 | ffnd |  |-  ( ph -> ( abs o. F ) Fn RR ) | 
						
							| 16 |  | ssidd |  |-  ( ph -> RR C_ RR ) | 
						
							| 17 | 15 16 | fvelimabd |  |-  ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> E. y e. RR ( ( abs o. F ) ` y ) = x ) ) | 
						
							| 18 |  | eqcom |  |-  ( ( ( abs o. F ) ` y ) = x <-> x = ( ( abs o. F ) ` y ) ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> ( ( ( abs o. F ) ` y ) = x <-> x = ( ( abs o. F ) ` y ) ) ) | 
						
							| 20 | 19 | rexbidv |  |-  ( ph -> ( E. y e. RR ( ( abs o. F ) ` y ) = x <-> E. y e. RR x = ( ( abs o. F ) ` y ) ) ) | 
						
							| 21 | 17 20 | bitrd |  |-  ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> E. y e. RR x = ( ( abs o. F ) ` y ) ) ) | 
						
							| 22 | 1 | adantr |  |-  ( ( ph /\ y e. RR ) -> F : RR --> RR ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ y e. RR ) -> y e. RR ) | 
						
							| 24 | 22 23 | fvco3d |  |-  ( ( ph /\ y e. RR ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( ph /\ y e. RR ) -> ( abs ` ( F ` y ) ) = ( ( abs o. F ) ` y ) ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( ( ph /\ y e. RR ) -> ( x = ( abs ` ( F ` y ) ) <-> x = ( ( abs o. F ) ` y ) ) ) | 
						
							| 27 | 26 | rexbidva |  |-  ( ph -> ( E. y e. RR x = ( abs ` ( F ` y ) ) <-> E. y e. RR x = ( ( abs o. F ) ` y ) ) ) | 
						
							| 28 | 21 27 | bitr4d |  |-  ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> E. y e. RR x = ( abs ` ( F ` y ) ) ) ) | 
						
							| 29 | 8 28 | bitr3d |  |-  ( ph -> ( x e. ( abs " ( F " RR ) ) <-> E. y e. RR x = ( abs ` ( F ` y ) ) ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ x = ( abs ` ( F ` y ) ) ) -> x = ( abs ` ( F ` y ) ) ) | 
						
							| 31 | 30 | breq1d |  |-  ( ( ph /\ x = ( abs ` ( F ` y ) ) ) -> ( x <_ C <-> ( abs ` ( F ` y ) ) <_ C ) ) | 
						
							| 32 | 5 29 31 | ralxfr2d |  |-  ( ph -> ( A. x e. ( abs " ( F " RR ) ) x <_ C <-> A. y e. RR ( abs ` ( F ` y ) ) <_ C ) ) | 
						
							| 33 | 2 32 | mpbird |  |-  ( ph -> A. x e. ( abs " ( F " RR ) ) x <_ C ) |