| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extoimad.1 |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
extoimad.2 |
|- ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ C ) |
| 3 |
1
|
ffvelcdmda |
|- ( ( ph /\ y e. RR ) -> ( F ` y ) e. RR ) |
| 4 |
3
|
recnd |
|- ( ( ph /\ y e. RR ) -> ( F ` y ) e. CC ) |
| 5 |
4
|
abscld |
|- ( ( ph /\ y e. RR ) -> ( abs ` ( F ` y ) ) e. RR ) |
| 6 |
|
imaco |
|- ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) |
| 7 |
6
|
a1i |
|- ( ph -> ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) ) |
| 8 |
7
|
eleq2d |
|- ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> x e. ( abs " ( F " RR ) ) ) ) |
| 9 |
|
absf |
|- abs : CC --> RR |
| 10 |
9
|
a1i |
|- ( ph -> abs : CC --> RR ) |
| 11 |
|
ax-resscn |
|- RR C_ CC |
| 12 |
11
|
a1i |
|- ( ph -> RR C_ CC ) |
| 13 |
10 12
|
fssresd |
|- ( ph -> ( abs |` RR ) : RR --> RR ) |
| 14 |
1 13
|
fco2d |
|- ( ph -> ( abs o. F ) : RR --> RR ) |
| 15 |
14
|
ffnd |
|- ( ph -> ( abs o. F ) Fn RR ) |
| 16 |
|
ssidd |
|- ( ph -> RR C_ RR ) |
| 17 |
15 16
|
fvelimabd |
|- ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> E. y e. RR ( ( abs o. F ) ` y ) = x ) ) |
| 18 |
|
eqcom |
|- ( ( ( abs o. F ) ` y ) = x <-> x = ( ( abs o. F ) ` y ) ) |
| 19 |
18
|
a1i |
|- ( ph -> ( ( ( abs o. F ) ` y ) = x <-> x = ( ( abs o. F ) ` y ) ) ) |
| 20 |
19
|
rexbidv |
|- ( ph -> ( E. y e. RR ( ( abs o. F ) ` y ) = x <-> E. y e. RR x = ( ( abs o. F ) ` y ) ) ) |
| 21 |
17 20
|
bitrd |
|- ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> E. y e. RR x = ( ( abs o. F ) ` y ) ) ) |
| 22 |
1
|
adantr |
|- ( ( ph /\ y e. RR ) -> F : RR --> RR ) |
| 23 |
|
simpr |
|- ( ( ph /\ y e. RR ) -> y e. RR ) |
| 24 |
22 23
|
fvco3d |
|- ( ( ph /\ y e. RR ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
| 25 |
24
|
eqcomd |
|- ( ( ph /\ y e. RR ) -> ( abs ` ( F ` y ) ) = ( ( abs o. F ) ` y ) ) |
| 26 |
25
|
eqeq2d |
|- ( ( ph /\ y e. RR ) -> ( x = ( abs ` ( F ` y ) ) <-> x = ( ( abs o. F ) ` y ) ) ) |
| 27 |
26
|
rexbidva |
|- ( ph -> ( E. y e. RR x = ( abs ` ( F ` y ) ) <-> E. y e. RR x = ( ( abs o. F ) ` y ) ) ) |
| 28 |
21 27
|
bitr4d |
|- ( ph -> ( x e. ( ( abs o. F ) " RR ) <-> E. y e. RR x = ( abs ` ( F ` y ) ) ) ) |
| 29 |
8 28
|
bitr3d |
|- ( ph -> ( x e. ( abs " ( F " RR ) ) <-> E. y e. RR x = ( abs ` ( F ` y ) ) ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ x = ( abs ` ( F ` y ) ) ) -> x = ( abs ` ( F ` y ) ) ) |
| 31 |
30
|
breq1d |
|- ( ( ph /\ x = ( abs ` ( F ` y ) ) ) -> ( x <_ C <-> ( abs ` ( F ` y ) ) <_ C ) ) |
| 32 |
5 29 31
|
ralxfr2d |
|- ( ph -> ( A. x e. ( abs " ( F " RR ) ) x <_ C <-> A. y e. RR ( abs ` ( F ` y ) ) <_ C ) ) |
| 33 |
2 32
|
mpbird |
|- ( ph -> A. x e. ( abs " ( F " RR ) ) x <_ C ) |