| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imo72b2lem0.1 |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
imo72b2lem0.2 |
|- ( ph -> G : RR --> RR ) |
| 3 |
|
imo72b2lem0.3 |
|- ( ph -> A e. RR ) |
| 4 |
|
imo72b2lem0.4 |
|- ( ph -> B e. RR ) |
| 5 |
|
imo72b2lem0.5 |
|- ( ph -> ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) = ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 6 |
|
imo72b2lem0.6 |
|- ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) |
| 7 |
1 3
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ph -> ( F ` A ) e. CC ) |
| 9 |
2 4
|
ffvelcdmd |
|- ( ph -> ( G ` B ) e. RR ) |
| 10 |
9
|
recnd |
|- ( ph -> ( G ` B ) e. CC ) |
| 11 |
8 10
|
absmuld |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) = ( ( abs ` ( F ` A ) ) x. ( abs ` ( G ` B ) ) ) ) |
| 12 |
8 10
|
mulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. CC ) |
| 13 |
12
|
abscld |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) e. RR ) |
| 14 |
|
absf |
|- abs : CC --> RR |
| 15 |
14
|
a1i |
|- ( ph -> abs : CC --> RR ) |
| 16 |
15
|
fimassd |
|- ( ph -> ( abs " ( F " RR ) ) C_ RR ) |
| 17 |
|
imaco |
|- ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) |
| 18 |
3
|
ne0d |
|- ( ph -> RR =/= (/) ) |
| 19 |
|
ax-resscn |
|- RR C_ CC |
| 20 |
19
|
a1i |
|- ( ph -> RR C_ CC ) |
| 21 |
15 20
|
fssresd |
|- ( ph -> ( abs |` RR ) : RR --> RR ) |
| 22 |
1 21
|
fco2d |
|- ( ph -> ( abs o. F ) : RR --> RR ) |
| 23 |
18 22
|
wnefimgd |
|- ( ph -> ( ( abs o. F ) " RR ) =/= (/) ) |
| 24 |
17 23
|
eqnetrrid |
|- ( ph -> ( abs " ( F " RR ) ) =/= (/) ) |
| 25 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 26 |
|
simpr |
|- ( ( ph /\ c = 1 ) -> c = 1 ) |
| 27 |
26
|
breq2d |
|- ( ( ph /\ c = 1 ) -> ( x <_ c <-> x <_ 1 ) ) |
| 28 |
27
|
ralbidv |
|- ( ( ph /\ c = 1 ) -> ( A. x e. ( abs " ( F " RR ) ) x <_ c <-> A. x e. ( abs " ( F " RR ) ) x <_ 1 ) ) |
| 29 |
1 6
|
extoimad |
|- ( ph -> A. x e. ( abs " ( F " RR ) ) x <_ 1 ) |
| 30 |
25 28 29
|
rspcedvd |
|- ( ph -> E. c e. RR A. x e. ( abs " ( F " RR ) ) x <_ c ) |
| 31 |
16 24 30
|
suprcld |
|- ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. RR ) |
| 32 |
|
2re |
|- 2 e. RR |
| 33 |
32
|
a1i |
|- ( ph -> 2 e. RR ) |
| 34 |
|
0le2 |
|- 0 <_ 2 |
| 35 |
34
|
a1i |
|- ( ph -> 0 <_ 2 ) |
| 36 |
7 9
|
remulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. RR ) |
| 37 |
35 33 36
|
absmulrposd |
|- ( ph -> ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) = ( 2 x. ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) ) ) |
| 38 |
5
|
fveq2d |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) = ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) ) |
| 39 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 40 |
39 12
|
mulcld |
|- ( ph -> ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) e. CC ) |
| 41 |
40
|
abscld |
|- ( ph -> ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) e. RR ) |
| 42 |
38 41
|
eqeltrd |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) e. RR ) |
| 43 |
3 4
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
| 44 |
1 43
|
ffvelcdmd |
|- ( ph -> ( F ` ( A + B ) ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ph -> ( F ` ( A + B ) ) e. CC ) |
| 46 |
45
|
abscld |
|- ( ph -> ( abs ` ( F ` ( A + B ) ) ) e. RR ) |
| 47 |
3 4
|
resubcld |
|- ( ph -> ( A - B ) e. RR ) |
| 48 |
1 47
|
ffvelcdmd |
|- ( ph -> ( F ` ( A - B ) ) e. RR ) |
| 49 |
48
|
recnd |
|- ( ph -> ( F ` ( A - B ) ) e. CC ) |
| 50 |
49
|
abscld |
|- ( ph -> ( abs ` ( F ` ( A - B ) ) ) e. RR ) |
| 51 |
46 50
|
readdcld |
|- ( ph -> ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) e. RR ) |
| 52 |
33 31
|
remulcld |
|- ( ph -> ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) e. RR ) |
| 53 |
45 49
|
abstrid |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) <_ ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) ) |
| 54 |
1 43
|
fvco3d |
|- ( ph -> ( ( abs o. F ) ` ( A + B ) ) = ( abs ` ( F ` ( A + B ) ) ) ) |
| 55 |
43 22
|
wfximgfd |
|- ( ph -> ( ( abs o. F ) ` ( A + B ) ) e. ( ( abs o. F ) " RR ) ) |
| 56 |
55 17
|
eleqtrdi |
|- ( ph -> ( ( abs o. F ) ` ( A + B ) ) e. ( abs " ( F " RR ) ) ) |
| 57 |
54 56
|
eqeltrrd |
|- ( ph -> ( abs ` ( F ` ( A + B ) ) ) e. ( abs " ( F " RR ) ) ) |
| 58 |
16 24 30 57
|
suprubd |
|- ( ph -> ( abs ` ( F ` ( A + B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |
| 59 |
1 47
|
fvco3d |
|- ( ph -> ( ( abs o. F ) ` ( A - B ) ) = ( abs ` ( F ` ( A - B ) ) ) ) |
| 60 |
47 22
|
wfximgfd |
|- ( ph -> ( ( abs o. F ) ` ( A - B ) ) e. ( ( abs o. F ) " RR ) ) |
| 61 |
60 17
|
eleqtrdi |
|- ( ph -> ( ( abs o. F ) ` ( A - B ) ) e. ( abs " ( F " RR ) ) ) |
| 62 |
59 61
|
eqeltrrd |
|- ( ph -> ( abs ` ( F ` ( A - B ) ) ) e. ( abs " ( F " RR ) ) ) |
| 63 |
16 24 30 62
|
suprubd |
|- ( ph -> ( abs ` ( F ` ( A - B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |
| 64 |
46 50 31 31 58 63
|
le2addd |
|- ( ph -> ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) <_ ( sup ( ( abs " ( F " RR ) ) , RR , < ) + sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
| 65 |
31
|
recnd |
|- ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. CC ) |
| 66 |
65
|
2timesd |
|- ( ph -> ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) = ( sup ( ( abs " ( F " RR ) ) , RR , < ) + sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
| 67 |
64 66
|
breqtrrd |
|- ( ph -> ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
| 68 |
42 51 52 53 67
|
letrd |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
| 69 |
38 68
|
eqbrtrrd |
|- ( ph -> ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
| 70 |
37 69
|
eqbrtrrd |
|- ( ph -> ( 2 x. ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
| 71 |
|
2pos |
|- 0 < 2 |
| 72 |
71
|
a1i |
|- ( ph -> 0 < 2 ) |
| 73 |
13 31 33 70 72
|
wwlemuld |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |
| 74 |
11 73
|
eqbrtrrd |
|- ( ph -> ( ( abs ` ( F ` A ) ) x. ( abs ` ( G ` B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |