Step |
Hyp |
Ref |
Expression |
1 |
|
imo72b2lem0.1 |
|- ( ph -> F : RR --> RR ) |
2 |
|
imo72b2lem0.2 |
|- ( ph -> G : RR --> RR ) |
3 |
|
imo72b2lem0.3 |
|- ( ph -> A e. RR ) |
4 |
|
imo72b2lem0.4 |
|- ( ph -> B e. RR ) |
5 |
|
imo72b2lem0.5 |
|- ( ph -> ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) = ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) |
6 |
|
imo72b2lem0.6 |
|- ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) |
7 |
1 3
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. RR ) |
8 |
7
|
recnd |
|- ( ph -> ( F ` A ) e. CC ) |
9 |
8
|
idi |
|- ( ph -> ( F ` A ) e. CC ) |
10 |
2 4
|
ffvelrnd |
|- ( ph -> ( G ` B ) e. RR ) |
11 |
10
|
recnd |
|- ( ph -> ( G ` B ) e. CC ) |
12 |
11
|
idi |
|- ( ph -> ( G ` B ) e. CC ) |
13 |
9 12
|
mulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. CC ) |
14 |
13
|
abscld |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) e. RR ) |
15 |
|
imaco |
|- ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) |
16 |
15
|
eqcomi |
|- ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) |
17 |
|
imassrn |
|- ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) |
18 |
17
|
a1i |
|- ( ph -> ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) ) |
19 |
|
absf |
|- abs : CC --> RR |
20 |
19
|
a1i |
|- ( ph -> abs : CC --> RR ) |
21 |
|
ax-resscn |
|- RR C_ CC |
22 |
21
|
a1i |
|- ( ph -> RR C_ CC ) |
23 |
20 22
|
fssresd |
|- ( ph -> ( abs |` RR ) : RR --> RR ) |
24 |
1 23
|
fco2d |
|- ( ph -> ( abs o. F ) : RR --> RR ) |
25 |
24
|
frnd |
|- ( ph -> ran ( abs o. F ) C_ RR ) |
26 |
18 25
|
sstrd |
|- ( ph -> ( ( abs o. F ) " RR ) C_ RR ) |
27 |
16 26
|
eqsstrid |
|- ( ph -> ( abs " ( F " RR ) ) C_ RR ) |
28 |
|
0re |
|- 0 e. RR |
29 |
28
|
ne0ii |
|- RR =/= (/) |
30 |
29
|
a1i |
|- ( ph -> RR =/= (/) ) |
31 |
30 24
|
wnefimgd |
|- ( ph -> ( ( abs o. F ) " RR ) =/= (/) ) |
32 |
31
|
necomd |
|- ( ph -> (/) =/= ( ( abs o. F ) " RR ) ) |
33 |
16
|
a1i |
|- ( ph -> ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) ) |
34 |
32 33
|
neeqtrrd |
|- ( ph -> (/) =/= ( abs " ( F " RR ) ) ) |
35 |
34
|
necomd |
|- ( ph -> ( abs " ( F " RR ) ) =/= (/) ) |
36 |
|
1red |
|- ( ph -> 1 e. RR ) |
37 |
|
simpr |
|- ( ( ph /\ c = 1 ) -> c = 1 ) |
38 |
37
|
breq2d |
|- ( ( ph /\ c = 1 ) -> ( x <_ c <-> x <_ 1 ) ) |
39 |
38
|
ralbidv |
|- ( ( ph /\ c = 1 ) -> ( A. x e. ( abs " ( F " RR ) ) x <_ c <-> A. x e. ( abs " ( F " RR ) ) x <_ 1 ) ) |
40 |
1 6
|
extoimad |
|- ( ph -> A. x e. ( abs " ( F " RR ) ) x <_ 1 ) |
41 |
36 39 40
|
rspcedvd |
|- ( ph -> E. c e. RR A. x e. ( abs " ( F " RR ) ) x <_ c ) |
42 |
27 35 41
|
suprcld |
|- ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. RR ) |
43 |
|
2re |
|- 2 e. RR |
44 |
43
|
a1i |
|- ( ph -> 2 e. RR ) |
45 |
5
|
idi |
|- ( ph -> ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) = ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) |
46 |
45
|
fveq2d |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) = ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) ) |
47 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
48 |
47 13
|
mulcld |
|- ( ph -> ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) e. CC ) |
49 |
48
|
abscld |
|- ( ph -> ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) e. RR ) |
50 |
46 49
|
eqeltrd |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) e. RR ) |
51 |
1
|
idi |
|- ( ph -> F : RR --> RR ) |
52 |
3
|
idi |
|- ( ph -> A e. RR ) |
53 |
4
|
idi |
|- ( ph -> B e. RR ) |
54 |
52 53
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
55 |
51 54
|
ffvelrnd |
|- ( ph -> ( F ` ( A + B ) ) e. RR ) |
56 |
55
|
recnd |
|- ( ph -> ( F ` ( A + B ) ) e. CC ) |
57 |
56
|
abscld |
|- ( ph -> ( abs ` ( F ` ( A + B ) ) ) e. RR ) |
58 |
52 53
|
resubcld |
|- ( ph -> ( A - B ) e. RR ) |
59 |
51 58
|
ffvelrnd |
|- ( ph -> ( F ` ( A - B ) ) e. RR ) |
60 |
59
|
recnd |
|- ( ph -> ( F ` ( A - B ) ) e. CC ) |
61 |
60
|
abscld |
|- ( ph -> ( abs ` ( F ` ( A - B ) ) ) e. RR ) |
62 |
57 61
|
readdcld |
|- ( ph -> ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) e. RR ) |
63 |
44 42
|
remulcld |
|- ( ph -> ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) e. RR ) |
64 |
56 60
|
abstrid |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) <_ ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) ) |
65 |
1 54
|
fvco3d |
|- ( ph -> ( ( abs o. F ) ` ( A + B ) ) = ( abs ` ( F ` ( A + B ) ) ) ) |
66 |
54 24
|
wfximgfd |
|- ( ph -> ( ( abs o. F ) ` ( A + B ) ) e. ( ( abs o. F ) " RR ) ) |
67 |
33
|
idi |
|- ( ph -> ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) ) |
68 |
66 67
|
eleqtrrd |
|- ( ph -> ( ( abs o. F ) ` ( A + B ) ) e. ( abs " ( F " RR ) ) ) |
69 |
65 68
|
eqeltrrd |
|- ( ph -> ( abs ` ( F ` ( A + B ) ) ) e. ( abs " ( F " RR ) ) ) |
70 |
27 35 41 69
|
suprubd |
|- ( ph -> ( abs ` ( F ` ( A + B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |
71 |
1 58
|
fvco3d |
|- ( ph -> ( ( abs o. F ) ` ( A - B ) ) = ( abs ` ( F ` ( A - B ) ) ) ) |
72 |
58 24
|
wfximgfd |
|- ( ph -> ( ( abs o. F ) ` ( A - B ) ) e. ( ( abs o. F ) " RR ) ) |
73 |
72 33
|
eleqtrrd |
|- ( ph -> ( ( abs o. F ) ` ( A - B ) ) e. ( abs " ( F " RR ) ) ) |
74 |
71 73
|
eqeltrrd |
|- ( ph -> ( abs ` ( F ` ( A - B ) ) ) e. ( abs " ( F " RR ) ) ) |
75 |
27 35 41 74
|
suprubd |
|- ( ph -> ( abs ` ( F ` ( A - B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |
76 |
57 61 42 42 70 75
|
le2addd |
|- ( ph -> ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) <_ ( sup ( ( abs " ( F " RR ) ) , RR , < ) + sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
77 |
42
|
recnd |
|- ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. CC ) |
78 |
77
|
2timesd |
|- ( ph -> ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) = ( sup ( ( abs " ( F " RR ) ) , RR , < ) + sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
79 |
78
|
eqcomd |
|- ( ph -> ( sup ( ( abs " ( F " RR ) ) , RR , < ) + sup ( ( abs " ( F " RR ) ) , RR , < ) ) = ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
80 |
79 63
|
eqeltrd |
|- ( ph -> ( sup ( ( abs " ( F " RR ) ) , RR , < ) + sup ( ( abs " ( F " RR ) ) , RR , < ) ) e. RR ) |
81 |
76 79 62 80
|
leeq2d |
|- ( ph -> ( ( abs ` ( F ` ( A + B ) ) ) + ( abs ` ( F ` ( A - B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
82 |
50 62 63 64 81
|
letrd |
|- ( ph -> ( abs ` ( ( F ` ( A + B ) ) + ( F ` ( A - B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
83 |
82 46 50 63
|
leeq1d |
|- ( ph -> ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
84 |
|
0le2 |
|- 0 <_ 2 |
85 |
84
|
a1i |
|- ( ph -> 0 <_ 2 ) |
86 |
7
|
idi |
|- ( ph -> ( F ` A ) e. RR ) |
87 |
10
|
idi |
|- ( ph -> ( G ` B ) e. RR ) |
88 |
86 87
|
remulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. RR ) |
89 |
85 44 88
|
absmulrposd |
|- ( ph -> ( abs ` ( 2 x. ( ( F ` A ) x. ( G ` B ) ) ) ) = ( 2 x. ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) ) ) |
90 |
83 89 49 63
|
leeq1d |
|- ( ph -> ( 2 x. ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) ) <_ ( 2 x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) |
91 |
|
2pos |
|- 0 < 2 |
92 |
91
|
a1i |
|- ( ph -> 0 < 2 ) |
93 |
14 42 44 90 92
|
wwlemuld |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |
94 |
8 11
|
absmuld |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) = ( ( abs ` ( F ` A ) ) x. ( abs ` ( G ` B ) ) ) ) |
95 |
94
|
idi |
|- ( ph -> ( abs ` ( ( F ` A ) x. ( G ` B ) ) ) = ( ( abs ` ( F ` A ) ) x. ( abs ` ( G ` B ) ) ) ) |
96 |
93 95 14 42
|
leeq1d |
|- ( ph -> ( ( abs ` ( F ` A ) ) x. ( abs ` ( G ` B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) |