Metamath Proof Explorer
		
		
		
		Description:  Specialization of breq1d to reals and less than.  (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | leeq1d.1 | |- ( ph -> A <_ C ) | 
					
						|  |  | leeq1d.2 | |- ( ph -> A = B ) | 
					
						|  |  | leeq1d.3 | |- ( ph -> A e. RR ) | 
					
						|  |  | leeq1d.4 | |- ( ph -> C e. RR ) | 
				
					|  | Assertion | leeq1d | |- ( ph -> B <_ C ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leeq1d.1 |  |-  ( ph -> A <_ C ) | 
						
							| 2 |  | leeq1d.2 |  |-  ( ph -> A = B ) | 
						
							| 3 |  | leeq1d.3 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | leeq1d.4 |  |-  ( ph -> C e. RR ) | 
						
							| 5 | 2 1 | eqbrtrrd |  |-  ( ph -> B <_ C ) |