Metamath Proof Explorer
Description: Specialization of breq1d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
leeq1d.1 |
|- ( ph -> A <_ C ) |
|
|
leeq1d.2 |
|- ( ph -> A = B ) |
|
|
leeq1d.3 |
|- ( ph -> A e. RR ) |
|
|
leeq1d.4 |
|- ( ph -> C e. RR ) |
|
Assertion |
leeq1d |
|- ( ph -> B <_ C ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leeq1d.1 |
|- ( ph -> A <_ C ) |
| 2 |
|
leeq1d.2 |
|- ( ph -> A = B ) |
| 3 |
|
leeq1d.3 |
|- ( ph -> A e. RR ) |
| 4 |
|
leeq1d.4 |
|- ( ph -> C e. RR ) |
| 5 |
2 1
|
eqbrtrrd |
|- ( ph -> B <_ C ) |