Metamath Proof Explorer


Theorem leeq1d

Description: Specialization of breq1d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses leeq1d.1
|- ( ph -> A <_ C )
leeq1d.2
|- ( ph -> A = B )
leeq1d.3
|- ( ph -> A e. RR )
leeq1d.4
|- ( ph -> C e. RR )
Assertion leeq1d
|- ( ph -> B <_ C )

Proof

Step Hyp Ref Expression
1 leeq1d.1
 |-  ( ph -> A <_ C )
2 leeq1d.2
 |-  ( ph -> A = B )
3 leeq1d.3
 |-  ( ph -> A e. RR )
4 leeq1d.4
 |-  ( ph -> C e. RR )
5 2 1 eqbrtrrd
 |-  ( ph -> B <_ C )