Metamath Proof Explorer


Theorem leeq1d

Description: Specialization of breq1d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses leeq1d.1 φ A C
leeq1d.2 φ A = B
leeq1d.3 φ A
leeq1d.4 φ C
Assertion leeq1d φ B C

Proof

Step Hyp Ref Expression
1 leeq1d.1 φ A C
2 leeq1d.2 φ A = B
3 leeq1d.3 φ A
4 leeq1d.4 φ C
5 2 1 eqbrtrrd φ B C