Metamath Proof Explorer
		
		
		
		Description:  Specialization of breq1d to reals and less than.  (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | leeq1d.1 | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
					
						|  |  | leeq1d.2 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
					
						|  |  | leeq1d.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | leeq1d.4 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
				
					|  | Assertion | leeq1d | ⊢  ( 𝜑  →  𝐵  ≤  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leeq1d.1 | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 2 |  | leeq1d.2 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
						
							| 3 |  | leeq1d.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | leeq1d.4 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 5 | 2 1 | eqbrtrrd | ⊢ ( 𝜑  →  𝐵  ≤  𝐶 ) |