Metamath Proof Explorer


Theorem leeq1d

Description: Specialization of breq1d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses leeq1d.1 ( 𝜑𝐴𝐶 )
leeq1d.2 ( 𝜑𝐴 = 𝐵 )
leeq1d.3 ( 𝜑𝐴 ∈ ℝ )
leeq1d.4 ( 𝜑𝐶 ∈ ℝ )
Assertion leeq1d ( 𝜑𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 leeq1d.1 ( 𝜑𝐴𝐶 )
2 leeq1d.2 ( 𝜑𝐴 = 𝐵 )
3 leeq1d.3 ( 𝜑𝐴 ∈ ℝ )
4 leeq1d.4 ( 𝜑𝐶 ∈ ℝ )
5 2 1 eqbrtrrd ( 𝜑𝐵𝐶 )