Metamath Proof Explorer


Theorem imo72b2lem0

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem0.1 φ F :
imo72b2lem0.2 φ G :
imo72b2lem0.3 φ A
imo72b2lem0.4 φ B
imo72b2lem0.5 φ F A + B + F A B = 2 F A G B
imo72b2lem0.6 φ y F y 1
Assertion imo72b2lem0 φ F A G B sup abs F <

Proof

Step Hyp Ref Expression
1 imo72b2lem0.1 φ F :
2 imo72b2lem0.2 φ G :
3 imo72b2lem0.3 φ A
4 imo72b2lem0.4 φ B
5 imo72b2lem0.5 φ F A + B + F A B = 2 F A G B
6 imo72b2lem0.6 φ y F y 1
7 1 3 ffvelcdmd φ F A
8 7 recnd φ F A
9 2 4 ffvelcdmd φ G B
10 9 recnd φ G B
11 8 10 absmuld φ F A G B = F A G B
12 8 10 mulcld φ F A G B
13 12 abscld φ F A G B
14 absf abs :
15 14 a1i φ abs :
16 15 fimassd φ abs F
17 imaco abs F = abs F
18 3 ne0d φ
19 ax-resscn
20 19 a1i φ
21 15 20 fssresd φ abs :
22 1 21 fco2d φ abs F :
23 18 22 wnefimgd φ abs F
24 17 23 eqnetrrid φ abs F
25 1red φ 1
26 simpr φ c = 1 c = 1
27 26 breq2d φ c = 1 x c x 1
28 27 ralbidv φ c = 1 x abs F x c x abs F x 1
29 1 6 extoimad φ x abs F x 1
30 25 28 29 rspcedvd φ c x abs F x c
31 16 24 30 suprcld φ sup abs F <
32 2re 2
33 32 a1i φ 2
34 0le2 0 2
35 34 a1i φ 0 2
36 7 9 remulcld φ F A G B
37 35 33 36 absmulrposd φ 2 F A G B = 2 F A G B
38 5 fveq2d φ F A + B + F A B = 2 F A G B
39 2cnd φ 2
40 39 12 mulcld φ 2 F A G B
41 40 abscld φ 2 F A G B
42 38 41 eqeltrd φ F A + B + F A B
43 3 4 readdcld φ A + B
44 1 43 ffvelcdmd φ F A + B
45 44 recnd φ F A + B
46 45 abscld φ F A + B
47 3 4 resubcld φ A B
48 1 47 ffvelcdmd φ F A B
49 48 recnd φ F A B
50 49 abscld φ F A B
51 46 50 readdcld φ F A + B + F A B
52 33 31 remulcld φ 2 sup abs F <
53 45 49 abstrid φ F A + B + F A B F A + B + F A B
54 1 43 fvco3d φ abs F A + B = F A + B
55 43 22 wfximgfd φ abs F A + B abs F
56 55 17 eleqtrdi φ abs F A + B abs F
57 54 56 eqeltrrd φ F A + B abs F
58 16 24 30 57 suprubd φ F A + B sup abs F <
59 1 47 fvco3d φ abs F A B = F A B
60 47 22 wfximgfd φ abs F A B abs F
61 60 17 eleqtrdi φ abs F A B abs F
62 59 61 eqeltrrd φ F A B abs F
63 16 24 30 62 suprubd φ F A B sup abs F <
64 46 50 31 31 58 63 le2addd φ F A + B + F A B sup abs F < + sup abs F <
65 31 recnd φ sup abs F <
66 65 2timesd φ 2 sup abs F < = sup abs F < + sup abs F <
67 64 66 breqtrrd φ F A + B + F A B 2 sup abs F <
68 42 51 52 53 67 letrd φ F A + B + F A B 2 sup abs F <
69 38 68 eqbrtrrd φ 2 F A G B 2 sup abs F <
70 37 69 eqbrtrrd φ 2 F A G B 2 sup abs F <
71 2pos 0 < 2
72 71 a1i φ 0 < 2
73 13 31 33 70 72 wwlemuld φ F A G B sup abs F <
74 11 73 eqbrtrrd φ F A G B sup abs F <