Metamath Proof Explorer


Theorem suprleubrd

Description: Natural deduction form of specialized suprleub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprleubrd.1 φ A
suprleubrd.2 φ A
suprleubrd.3 φ x y A y x
suprleubrd.4 φ B
suprleubrd.5 φ z A z B
Assertion suprleubrd φ sup A < B

Proof

Step Hyp Ref Expression
1 suprleubrd.1 φ A
2 suprleubrd.2 φ A
3 suprleubrd.3 φ x y A y x
4 suprleubrd.4 φ B
5 suprleubrd.5 φ z A z B
6 suprleub A A x y A y x B sup A < B z A z B
7 1 2 3 4 6 syl31anc φ sup A < B z A z B
8 7 bicomd φ z A z B sup A < B
9 8 biimpd φ z A z B sup A < B
10 9 imp φ z A z B sup A < B
11 5 10 mpdan φ sup A < B