Description: Natural deduction form of specialized suprleub . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suprleubrd.1 | |
|
suprleubrd.2 | |
||
suprleubrd.3 | |
||
suprleubrd.4 | |
||
suprleubrd.5 | |
||
Assertion | suprleubrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprleubrd.1 | |
|
2 | suprleubrd.2 | |
|
3 | suprleubrd.3 | |
|
4 | suprleubrd.4 | |
|
5 | suprleubrd.5 | |
|
6 | suprleub | |
|
7 | 1 2 3 4 6 | syl31anc | |
8 | 7 | bicomd | |
9 | 8 | biimpd | |
10 | 9 | imp | |
11 | 5 10 | mpdan | |