Metamath Proof Explorer


Theorem suprleubrd

Description: Natural deduction form of specialized suprleub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses suprleubrd.1 φA
suprleubrd.2 φA
suprleubrd.3 φxyAyx
suprleubrd.4 φB
suprleubrd.5 φzAzB
Assertion suprleubrd φsupA<B

Proof

Step Hyp Ref Expression
1 suprleubrd.1 φA
2 suprleubrd.2 φA
3 suprleubrd.3 φxyAyx
4 suprleubrd.4 φB
5 suprleubrd.5 φzAzB
6 suprleub AAxyAyxBsupA<BzAzB
7 1 2 3 4 6 syl31anc φsupA<BzAzB
8 7 bicomd φzAzBsupA<B
9 8 biimpd φzAzBsupA<B
10 9 imp φzAzBsupA<B
11 5 10 mpdan φsupA<B