Step |
Hyp |
Ref |
Expression |
1 |
|
suprleubrd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
suprleubrd.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
suprleubrd.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
4 |
|
suprleubrd.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
suprleubrd.5 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) |
6 |
|
suprleub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |
7 |
1 2 3 4 6
|
syl31anc |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |
8 |
7
|
bicomd |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ↔ sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ) ) |
9 |
8
|
biimpd |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 → sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) → sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ) |
11 |
5 10
|
mpdan |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ) |